共查询到20条相似文献,搜索用时 15 毫秒
1.
基于拉格朗日方法建立了耦合流体流动、紫外光强辐射与粒子辐射剂量的数值计算模型.利用该模型对工业尺寸的紫外消毒设备进行了模拟计算,获得了消毒设备内的场量信息;展示了利用CFD模拟优化设计紫外消毒反应器的方法;讨论了设置挡板和改变灯管布置2种方式对粒子辐射剂量的影响,计算结果表明,调整辐射场对紫外消毒设备性能的改善程度明显高于改变流动状态. 相似文献
2.
This study was undertaken to determine the dissipation and degradation of coumaphos [ O-(3-chloro-4-methyl-2-oxo-2 H-1-benzopyran-7-yl) O, O-diethyl phosphorothioate] under different sunlight conditions and at different temperatures. The effect of the ultra violet (UV) component of solar radiation was also studied using quartz tubes in addition to other radiation in the visible range using glass tubes and the results were compared with those obtained under the dark light conditions. Water suspensions of coumaphos were incubated at three temperatures viz. 22°C, 37°C and 53°C in closed systems to study the effect of temperature. Volatilization, mineralization and degradation of coumaphos increased with an increase in temperature and exposure to solar radiation, particularly under the UV component of the solar radiation. Major loss of the pesticide occurred through volatilization. The optimum temperature for the degradation of coumaphos was found to be at 37°C. The data obtained from the mineralization and degradation studies indicated that 53°C crosses the biological range for suitable growth of microorganism. UV radiation exposure along with maintaining temperature at 37°C may prove useful in the dissipation and/or degradation of coumaphos prior to its disposal as waste from cattle dipping vats. 相似文献
3.
Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. 相似文献
4.
采用UV/Fenton技术处理金属切削液废水,并通过正交实验和单因素实验得到了最佳工作条件为:pH=2.5,H2O2(浓度30%)投加量=127.5 mL/L,Fe2+投加量=24.8 mmol/L,总反应时间=3 h,投加次数6次,此条件下金属切削液废水COD去除率达到95%。最后,通过正交实验数据和单因素模型方程利用1st Opt进行多元非线性拟合建立UV/Fen-ton对金属切削液废水COD降解率的数学模型方程,然后进行分析讨论。 相似文献
6.
Polycyclic Aromatic Hydrocarbons’ (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs’ phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs’ toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed ( p = 0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities ( p = 0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased. 相似文献
7.
The occurrence and persistence of pharmacologically active compounds in the environment has been an increasingly important issue. The objectives of this study were to investigate the decomposition of aqueous antimicrobial compounds using activated sludge, γ-irradiation, and UV treatment, and to evaluate the toxicity towards green algae, Pseudokirchneriella subcapitata, before and after treatment. Tetracycline (TCN), lincomycin (LMC) and sulfamethazine (SMZ) were used as target compounds. Gamma (γ)-irradiation showed the highest removal efficiency for all target compounds, while UV and activated sludge treatment showed compound-dependent removal efficiencies. TCN and SMZ were well degraded by all three treatment methods. However, LMC showed extremely low removal efficiency for UV and activated sludge treatments. Overall, the algal toxicity after degradation processes was significantly decreased, and was closely correlated to removal efficiency. However, in the case of γ-irradiated TCN, UV and activated sludge treated LMC as well as sludge treated SMZ, the observed toxicity was higher than expected, which indicates the substantial generation of byproducts or transformed compounds of a greater toxicity in the treated sample. Consequently, γ-radiation treatment could be an effective method for removal of recalcitrant compounds such as antibiotics. 相似文献
8.
采用O3、UV/O3高级氧化法对水中六氯苯(HCB)的降解效果及机理进行了研究,并对结果进行了比较,结果表明,UV本身对HCB的去除率贡献不大,HCB可被O3、UV/O3快速降解,即UV<O3<UV/O3;O3、UV/O3作用时,提高体系的初始pH值不利于HCB的降解,在pH=3,HCB=0.2 mg/L,反应40 min时,HCB的去除可达50%左右,酸性条件下有利于降解反应的进行;无论是O3单独作用还是UV/O3联合作用,HCB的降解基本上满足准一级反应动力学规律,如果体系的pH值基本保持恒定,这种规律就更为明显。根据离子色谱(IC)、GC对六氯苯降解中间产物进行了测定,探讨了O3、UV/O3降解六氯苯的途径和机理。 相似文献
9.
The photodegradation of five representative nitromusk compounds in water has been performed in a stirred batch photoreactor with a UV low-pressure immersed mercury lamp, at constant temperature and different doses of hydrogen peroxide. The rate constants have been calculated on the basis of experimental data and a postulated first-order kinetic model. The rate constants, at 298 K and a dose of 1.1746 μmol l −1 H 2O 2 ranges from 0.3567 × 10 −3 s −1 for musk tibetene, to 1.785 × 10 −3 s −1 for musk ambrette. 相似文献
10.
The degradation of atrazine in aqueous solution by UV or UV/H 2O 2 processes, and the toxic effects of the degradation products were explored. The mineralization of atrazine was not observed in the UV irradiation process, resulting in the production of hydroxyatrazine (OIET) as the final product. In the UV/H 2O 2 process, the final product was ammeline (OAAT), which was obtained by two different pathways of reaction: dechlorination followed by hydroxylation, and the de-alkylation of atrazine. The by-products of the reaction of dechlorination followed by hydroxylation were OIET and hydroxydeethyl atrazine (OIAT), and those of de-alkylation were deisopropyl atrazine (CEAT), deethyl atrazine (CIAT), and deethyldeisopropyl atrazine (CAAT). OIAT and OAAT appeared to be quite stable in the degradation of atrazine by the UV/H 2O 2 process. In a toxicity test using Daphnia magna, the acute toxic unit (TUa) was less than 1 of TUa (100/EC 50, %) in the UV/H 2O 2 process after 30 min of reaction time, while 1.2 to 1.3 of TUa was observed in the UV process. The TUa values of atrazine and the degradation products have the following decreasing order: OIET> Atrazine> CEAT≈CIAT> CAAT. OIAT and OAAT did not show any toxic effects. 相似文献
11.
利用UV/H2O2光氧化反应器降解水中的磺胺嘧啶,考察了H2O2投量、pH值、紫外功率等因素对去除效果的影响,同时对反应动力学及降解产物进行了分析。结果表明,在紫外辐照与H2O2氧化共同作用下,UV/H2O2降解水中磺胺嘧啶效果显著,去除率达90%以上,其降解过程符合一级反应动力学模型(R2=0.991 2)。H2O2投量与磺胺嘧啶降解速率常数具有良好的线性关系,H2O2投量由0.03增大至1.50 mmol·L-1,反应速率常数由0.048 2增大至0.359 9 min-1;同时,随着紫外灯功率由5增大至15 W,反应速率常数由0.066 2增大至0.163 1 min-1;随着初始磺胺嘧啶浓度由0.02增加至0.08 mmol·L-1,反应速率常数由0.251 7逐渐降低至0.046 8 min-1;pH由3.0升高至7.0,反应速率常数由0.070 2增大至0.102 3 min-1,当pH继续增大时,反应速率常数反而降低。根据液相色谱/质谱(LC/MS)对中间产物分析,UV/H2O2降解磺胺嘧啶生成质荷比(m/z)为173、186和200的对氨基苯磺酸等中间产物,推测S-N键和C-N键被打开,这些中间产物可进一步被降解,但TOC去除率仅为7%,表明磺胺嘧啶仅部分被矿化。UV/H2O2工艺处理磺胺嘧啶的电能效率(EEO)采用每一对数减少级电能输入进行评价,优化条件下电能效率为0.078 kWh·m-3,可为实际工程应用提供参考。 相似文献
12.
The direct photolysis of an important endocrine disruptor compound, di-n-butyl phthalate (DBP), has been investigated under monochromatic UV irradiation at 254 nm over a wide pH range (3-11). The investigation was carried out under idealized conditions and has considered both reaction kinetics and the degradation mechanism. It was found that more than 90% of DBP can be degraded within an hour of irradiation in water. A simple model has been developed and used to predict the initial DBP photolysis rate constant at different pH values and initial DBP concentrations. The major decomposition mechanism of DBP is believed to involve the hydrolytic photolysis of the carbon in the alpha and/or beta-position of the ester chain with the production of aromatic carboxylic derivatives. Additionally, multi-degradation pathways are proposed for acid-catalyzed hydrolytic photolysis (pH 3-5), which was found to be useful in explaining the photo-degradation of DBP under acidic conditions. The use of 254 nm UV to photo-degrade DBP was found to be a relatively fast and clean process, especially in neutral to basic conditions. 相似文献
13.
采用O 3、UV/O 3高级氧化法对水中六氯苯(HCB)的降解效果及机理进行了研究,并对结果进行了比较,结果表明,UV本身对HCB的去除率贡献不大,HCB可被O 3、UV/O 3快速降解,即UV<O 3<UV/O 3;O 3、UV/O 3作用时,提高体系的初始pH值不利于HCB的降解,在pH=3,HCB=0.2 mg/L,反应40 min时,HCB的去除可达50%左右,酸性条件下有利于降解反应的进行;无论是O 3单独作用还是UV/O 3联合作用,HCB的降解基本上满足准一级反应动力学规律,如果体系的pH值基本保持恒定,这种规律就更为明显。根据离子色谱(IC)、GC对六氯苯降解中间产物进行了测定,探讨了O 3、UV/O 3降解六氯苯的途径和机理。 相似文献
14.
The present paper aims at presenting a kinetic model that is supposed to result in the decomposition of methylparaben in completely mixed batch reactor (CMBR) using the UV/H 2O 2 process. The proposed model incorporates photochemical, chemical reactions and their constant rates to formulate the overall kinetic rate expressions which are integrated into MATLAB. Thus, the changes in pH values during the process of oxidation are taken into consideration. In addition, the effects of hydrogen peroxide (HP) dosage, as well as the concentration of hydroxyl radicals, are examined. Accordingly, the pseudo-first-order rate constant, its variation as functions of HP concentration, incident UV-light intensity and the limitations of the adopted approach are discussed. In line with that, the authors provided evidence of the validity of the kinetic model through the exposure of previous experimental studies as reported in the literature review then through the evidence of the present experimental data. 相似文献
15.
This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350 °C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H 2O and CO 2. The Arrhenius law data obtained for the phenol disappearance are the following: k = 1.8 × 10 6 ± 3.9 × 10 5 M −1 s −1 (pre-exponential factor) and Ea = 77 ± 8 kJ mol −1 (activation energy). 相似文献
16.
A theoretical and experimental study of bisphenol A (BPA) degradation by the UV/H2O2 process in water is presented. The effects of the H2O2 concentration and the specific rate of photon emission (EP,0) on BPA degradation were investigated. A kinetic model derived from a reaction sequence was employed to predict BPA and hydrogen peroxide concentrations over time using an annular photochemical reactor in batch recirculation mode. The local volumetric rate of photon absorption (LVRPA) inside the photoreactor was computed using a Line Source with Parallel Plane emission model (LSPP). From the proposed kinetic model and the experimental data, the second order rate constants of the reactions between hydroxyl radicals and the main reacting species (H2O2 and BPA) were estimated applying a nonlinear regression method. A good agreement between the kinetic model and experimental data, for a wide range of operating conditions, was obtained. For BPA, H2O2, and TOC concentrations, the calculated root means square errors (RMSE) were 2.3?×?10??2, 9.8?×?10??1, and 9.0?×?10??2 mmol L??1, respectively. The simplified kinetic model presented in this work can be directly applied to scaling-up and reactor design, since the estimated kinetic constants are independent of the reactor size, shape, and configuration. Further experiments were made by employing low BPA initial concentration (100 μg L??1) in water and real wastewater. A lower degradation rate of BPA was observed in the real wastewater, although the UV/H2O2 process has also been able to completely degrade the target pollutant in less than 1 h. 相似文献
17.
The present work involves the photocatalytic mineralization of glyphosate on a plug flow reactor by UV/TiO 2. The effect of catalyst loading shows an optimal value (0.4 g L ?1) which is necessary to mineralize glyphosate. The kinetic rate of glyphosate mineralization decreases with the increasing initial concentration of glyphosate, and the data can be described using the first-order model. An alkaline environment is conducive to glyphosate mineralization. The mineralization efficiency increases with elevated flow rate to 114 mL min ?1, which is followed by a decrease with a further increase in flow rate due to the reduction of the residence time. The presence of external oxidants (K 2S 2O 8, H 2O 2 and KBrO 3) and photosencitizer (humic acid) can significantly enhance glyphosate mineralization. Photocatalysis oxidation ability of the three studied oxidants decrease in the order of: S 2O 8 2? > BrO 3 ? > H 2O 2. Finally, the Langmuir–Hinshelwood (L-H) model was used to rationalize the mechanisms of reactions occurring on TiO 2 surfaces and L-H model constants were also determined. 相似文献
18.
Several different Advanced Oxidation Processes (AOPs) including ozonation at pH 6.5 and 10, photolysis and heterogeneous photocatalysis using TiO 2 as semiconductor and dissolved oxygen as electron acceptor were applied to study the degradation of glyphosate ( N-phosphonomethyl glycine) in water. The degree of glyphosate degradation, the reactions kinetic and the formation of the major metabolite, aminomethyl phosphonic acid (AMPA), were evaluated. Ozonation at pH 10 resulted in the maximum mineralization of glyphosate. It was observed that under the experimental conditions used in this study the degradation of glyphosate followed the first-order kinetics. The half-life obtained for glyphosate degradation in the O 3/pH 10 process was 1.8 minutes. 相似文献
20.
介绍了PCBs紫外光降解的机理及研究进展 ,讨论了影响PCBs光降解的主要因素 ,即环上的氯原子数目、取代位置及所处的微环境均显著地影响PCBs的光降解速率。简述了PCBs生物降解的研究进展 ,重点概述了好氧降解、厌氧降解及好氧厌氧协同作用的机理及特点。最后 ,讨论了PCBs生物降解和光降解的互补性 ,介绍了最近的研究进展 ,指出光降解和生物降解耦合将加快PCBs的移走速率 ,提出了PCBs污染土壤原位修复需要进一步解决的问题。 相似文献
|