首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

2.
The antioxidant responses of coffee (Coffea arabica L.) cell suspension cultures to cadmium (Cd) were investigated. Cd accumulated very rapidly in the cells and this accumulation was directly correlated with an increase in applied CdCl(2) concentration in the external medium. At 0.05mM CdCl(2), growth was stimulated, but at 0.5mM CdCl(2), the growth rate was reduced. An alteration in activated oxygen metabolism was detected by visual analysis as well as by an increase in lipid peroxidation at the higher CdCl(2) concentration. Catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) and superoxide dismutase (SOD; EC 1.15.1.1) activity increased, particularly at the higher concentration of CdCl(2). Ascorbate peroxidase (APX; EC 1.11.1.11) activity was increased at the lower CdCl(2) concentration used, but could not be detected in cells growing in the higher CdCl(2) concentration after 24h of growth, whilst guaiacol peroxidase (GOPX; EC 1.11.1.7) did not show a clear response to Cd treatment. An analysis by non-denaturing PAGE followed by staining for enzyme activity, revealed one CAT isoenzyme, nine SOD isoenzymes and four GR isoenzymes. The SOD isoenzymes were differently affected by CdCl(2) treatment and one GR isoenzyme was shown to specifically respond to CdCl(2). The results suggest that the higher concentrations of CdCl(2) may lead to oxidative stress. The main response appears to be via the induction of SOD and CAT activities for the removal of reactive oxygen species (ROS), and by the induction of GR to ensure the availability of reduced glutathione for the synthesis of Cd-binding peptides, which may also be related to the inhibition of APX activity probably due to glutathione and ascorbate depletion.  相似文献   

3.
Zhou ZS  Wang SJ  Yang ZM 《Chemosphere》2008,70(8):1500-1509
Mercury has become one of the major causes of toxic metal pollution in agricultural lands. Accumulation of mercury by plants may disrupt many cellular functions and block growth and development. To assess mercury toxicity, we performed an experiment focusing on the responses of alfalfa (Medicago sativa) to Hg(2+)-induced oxidative stress. Alfalfa plants were treated with 0-40microM HgCl(2) for 7d. The concentrations of Hg(2+) were positively correlated with the generation of O2- and H(2)O(2) in leaves. Treatment with Hg(2+) increased the activities of NADH oxidase and lipoxygenase (LOX) and damaged the biomembrane lipids. To understand biochemical responses under Hg stress, activities of several antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis revealed five isoforms in leaves, but they showed different patterns. Also, eight isoenzymes of APX and seven of POD in leaves were detected. However, only one isoform of CAT was visualized. The total activities of APX, POD and CAT were generally enhanced. We also measured several antioxidative metabolites such as ascorbate and glutathione (GSH), and found that both differentially accumulated in leaves. These results indicate that the increased levels of O2- and H(2)O(2) under Hg stress were closely linked to the improved capacity of antioxidant enzymes. The data not only provide the important information for better understanding of the toxic and tolerance mechanisms, but as well can be used as a bio-indicator for soil contamination by Hg.  相似文献   

4.
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0–12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.  相似文献   

5.
Background, aim, and scope  Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. Main features  The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Materials and methods  Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. Results and discussion  We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Conclusions  Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.  相似文献   

6.
The role of Phragmites sp. in phytoremediation of wastewaters containing azo dyes is still, in many ways, at its initial stage of investigation. This plant response to the long-term exposure to a highly conjugated di-azo dye (Direct Red 81, DR81) was assessed using a vertical flow constructed wetland, at pilot scale. A reed bed fed with water was used as control. Changes in photosynthetic pigment content in response to the plant contact with synthetic DR81 effluent highlight Phragmites plasticity. Phragmites leaf enzymatic system responded rapidly to the stress imposed; in general, within 1 day, the up-regulation of foliar reactive oxygen species-scavenging enzymes (especially superoxide dismutase, ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxidase) was noticed as plants entered in contact with synthetic DR81 effluent. This prompt activation decreased the endogenous levels of H2O2 and the malonyldialdehyde content beyond reference values. Glutathione S-transferase (GST) activity intensification was not enough to cope with stress imposed by DR81. GPX activity was pivotal for the detoxification pathways after a 24-h exposure. Carotenoid pool was depleted during this shock. After the imposed DR81 stress, plants were harvested. In the next vegetative cycle, Phragmites had already recovered from the chemical stress. Principal component analysis (PCA) highlights the role of GPX, GST, APX, and carotenoids along catalase (CAT) in the detoxification process.  相似文献   

7.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

8.
Song NH  Yin XL  Chen GF  Yang H 《Chemosphere》2007,68(9):1779-1787
Chlorotoluron is a phenylurea herbicide that is widely used for controlling grass weeds in the land of cereal, cotton and fruit production. However, extensive use of this herbicide may lead to its accumulation in ecosystems, thus inducing the toxicity to crops and vegetables. To assess chlorotoluron-induced toxicity in plants, we performed the experiment focusing on the metabolic adaptation of wheat plants (Triticum aestivum) to the chlorotoluron-induced oxidative stress. The wheat plants were cultured in the soils with chlorotoluron at concentrations of 0-25mg/kg. Chlorotoluron accumulation in plants was positively correlated with the external chlorotoluron concentrations, but negatively with the plant growth. Treatment with chlorotoluron induced the accumulation of O(2)(-) and H(2)O(2) in leaves and resulted in the peroxidation of plasma membrane lipids in the plant. We measured the endogenous proline level and found that it accumulated significantly in chlorotoluron-exposed roots and leaves. To understand the biochemical responses to the herbicide, activities of the antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) revealed that there were three isoforms in the roots and leaves, but the isoforms in the tissues showed different patterns. Also, using the native PAGE, 6 isoforms of root POD and 10 in leaves were detected. The total activity of POD in roots was significantly enhanced. Activities of APX in roots and leaves showed a similar pattern. The CAT activities were generally suppressed under the chlorotoluron exposure.  相似文献   

9.
This study hypothesized that the positive or negative effects of exogenous abscisic acid (ABA) on oxidative stress caused by lead were dose dependent. The effects of different levels of ABA (2.5, 5, and 10 mg L?1) on lead toxicity in the leaves of Atractylodes macrocephala were studied by investigating plant growth, soluble sugars, proteins, lipid peroxidation, and antioxidative enzymes. Excess Pb inhibited root dry weight, root length, and the number of lateral roots, but increased shoot growth. In addition, lead stress significantly decreased the levels of chlorophyll pigments, protein, and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Different levels of ABA significantly increased SOD, CAT, POD, and APX activities, but decreased the level of hydrogen peroxide and malondialdehyde in nonstressed plants. Exogenous application of 2.5 mg L?1 ABA detoxified the stress-generated damages caused by Pb and also enhanced plant growth, soluble sugars, proteins, and all four antioxidant enzyme activities but reduced Pb uptake of lead-stressed plant compared to lead treatment alone. However, the toxic effects of Pb were further increased by the applications of 5 and 10 mg L?1 ABA. The levels of antioxidants caused by a low concentration of exogenous ABA might be responsible for minimizing the Pb-induced toxicity in A. macrocephala.  相似文献   

10.
Wu H  Zhang R  Liu J  Guo Y  Ma E 《Chemosphere》2011,83(4):599-604
The study was undertaken to evaluate the effects of malathion and chlorpyrifos on acetylcholinesterase (AChE), esterase (EST) activity and antioxidant system after topical application with different concentration to Oxya chinensis. The results showed that malathion and chlorpyrifos inhibited EST, AChE activity and increased malondialdehyde (MDA) contents. A change in superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activity combined with reduced glutathione (GSH) and total glutathione (tGSH) contents was found in O. chinensis after malathion and chlorpyrifos treatments. Malathion and chlorpyrifos increased SOD and CAT activity compared with the control. With the concentrations increasing, SOD and CAT activity showed the similar tendency, namely, SOD and CAT activity increased at the lower concentrations and decreased at the higher concentrations. The results showed that malathion and chlorpyrifos decreased significantly GR activity. GST and GPx activity at the studied concentrations of chlorpyrifos was lower than that of the control. However, no significance was observed. GPx and GST activity in malathion treated grasshoppers showed a biphasic response with an initial increase followed by a decline in its activity. Malathion and chlorpyrifos decreased GSH contents and the ratio of GSH/GSSG. The present findings indicated that the toxicity of malathion and chlorpyrifos might be associated with oxidative stress.  相似文献   

11.
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.  相似文献   

12.
13.
Monnet F  Bordas F  Deluchat V  Baudu M 《Chemosphere》2006,65(10):1806-1813
The aim of this study was to investigate the toxicity of copper on the aquatic lichen Dermatocarpon luridum focusing on the activities of some antioxidant enzymes. Investigations were conducted using increasing copper concentrations (0.00, 0.25, 0.50, 0.75 and 1.00 mM CuSO(4) x 5H(2)O) in synthetic freshwater that emulated the major ion compositions of its natural water biota; time course measurement was 0, 3, 6, 12, 24 and 48 h. The copper concentration in thalli increased with its increase in the medium and the duration of treatment. Copper induced lipid peroxidation, measured using the hydroperoxi-conjugated dienes (HPCD) concentration. The decrease in the protein concentrations was similar in thalli exposed to copper concentrations above 0.50 mM and the decrease was twice lower in thalli exposed to 0.25 mM copper. The activities of antioxidant enzymes measured were differently affected by copper excess. For 0.25 mM copper, the activities of SOD (superoxide dismutase) and APX (ascorbate peroxidase) were unchanged when compared with unstressed thalli whereas the CAT (catalase) activity increased and the GR (glutathione reductase) activity decreased. The activities of SOD and APX increased in thalli exposed to concentrations above 0.50mM copper. The CAT activity increased after the first 3h of experiments at these concentrations and then decreased with the duration of treatment at an activity lower than in the unstressed plant. Whereas the APX activity increased, the GR activity similarly decreased for the copper concentration tested whatever the duration of the experiment.  相似文献   

14.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

15.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

16.
This study measured the responses of different anti-oxidants in 2-year-old birch (Betula pendula Roth) seedlings subjected to simulated acid rain (pH 4.0) and heavy metals (Cu/Ni), applied alone or in combination for 2 months. The applied concentrations of pollutants did not significantly affect seedling biomass or total glutathione levels. Acid rain alone increased superoxide dismutase (SOD) activity both in leaves and roots, while heavy metals alone inhibited SOD activity in roots. Both acid rain and heavy metals applied singly increased ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities in leaves but decreased activities in roots. In contrast, acid rain and heavy metal treatments increased glutathione reductase (GR) activity in roots but not in leaves. Spraying birch seedlings with a mixture of acid rain and heavy metals increased SOD, APX and GPX activities in leaves and GR activity in roots. However, the effects of mixed pollutants on enzyme activities usually were less than the summed effects of individual pollutants. Enzyme responses also depended on where pollutants were applied: spraying pollutants onto the shoots initiated higher responses in SOD, APX and GPX than did application to the soil surface, while the opposite was true for GR.  相似文献   

17.
Li M  Hu C  Zhu Q  Chen L  Kong Z  Liu Z 《Chemosphere》2006,62(4):565-572
The metal-induced lipid peroxidation and response of antioxidative enzymes have been investigated in the marine microalga Pavlova viridis to understand the mechanisms of metal resistance in algal cells. We have analyzed superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) activities and glutathione (GSH) contents in microalgal cells grown at different concentrations of copper and zinc. In response to each metal, lipid peroxidation was enhanced with the increase of concentrations, as an indication of the oxidative damage caused by metal concentration assayed in the microalgae cells. Exposure of P. viridis to the two metals caused changes in enzyme activities in a different manner, depending on the metal assayed: after copper treatments, total SOD activity was enhanced, while it was reduced after zinc exposure. Copper and zinc stimulated the activities of CAT and GSH whereas GPX showed a remarkable increase in activity in response to copper treatments and decrease after zinc treatments. These results suggest that an activation of some antioxidant enzymes was enhanced to counteract the oxidative stress induced by the two metals.  相似文献   

18.
Polygodial is a drimane sesquiterpene dialdehyde derived from certain terrestrial plant species that potently inhibits ascidian metamorphosis, and thus has potential for controlling fouling ascidians in bivalve aquaculture. The current study examined the effects of polygodial on a range of biochemical biomarkers of oxidative stress and detoxification effort in the gills of adult Perna canaliculus Gmelin. Despite high statistical power and the success of positive controls, the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPOX), catalase (CAT), and superoxide dismutase (SOD); thiol status, as measured by total glutathione (GSH-t), glutathione disulphide (GSSG), and GSH-t/GSSG ratio; end products of oxidative damage, lipid hydroperoxides (LHPO) and protein carbonyls; and detoxification pathways, represented by GSH-t and glutathione S-transferase (GST), were unaffected in the gills of adult P. canaliculus exposed to polygodial at 0.1 or 1 × the 99% effective dose in fouling ascidians (IC99). Similarly, GR levels, thiol status, and detoxification activities were unaffected in mussels exposed to polygodial at 10 × the IC99, although GPOX, CAT, and SOD activities increased. However, the increases were small relative to positive controls, no corresponding oxidative damage was detected, and this concentration greatly exceeds effective doses required to inhibit fouling ascidians in aquaculture. These findings compliment a previous study that established the insensitivity to polygodial of P. canaliculus growth, condition, and mitochondrial functioning, providing additional support for the suitability of polygodial for use as an antifouling agent in bivalve aquaculture.  相似文献   

19.
Coontail (Ceratophyllum demersum L.) plants when exposed to various concentrations of Pb (1-100microM) for 1-7days, exhibited both phytotoxic and tolerance responses. The specific responses were function of concentration and duration. Plants accumulated 1748mugPbg(-1) dw after 7d which reflected its metal accumulation ability, however most of the metal (1222microgg(-1) dw, 70%) was accumulated after 1d exposure only. The toxic effect and oxidative stress caused by Pb were evident by the reduction in biomass and photosynthetic pigments and increase in malondialddehyde (MDA) content and electrical conductivity with increase in metal concentration and exposure duration. Morphological symptoms of senescence phenomena such as chlorosis and fragmentation of leaves were observed after 7d. The metal tolerance and detoxification strategy adopted by the plant was investigated with reference to antioxidant system and synthesis of phytochelatins. Protein and antioxidant enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) showed induction at lower concentration and duration followed by decline. All enzymes except GPX showed maximum activity after 1d. An increase in cysteine, non-protein thiols (NP-SH) and glutathione (GSH) content was observed at moderate exposure conditions followed by decline. Phytochelatins (PC(2) and PC(3)) were synthesized to significant levels at 10 and 50microM Pb with concomitant decrease in GSH levels. Thus production of PCs seems important for the detoxification of metal, however it may lead to depletion of GSH and consequently oxidative stress. Results suggest that plants responded positively to moderate Pb concentrations and accumulated high amount of metal. Due to metal accumulation coupled with detoxification potential, the plant appears to have potential for its use as phytoremediator species in aquatic environments having moderate pollution of Pb.  相似文献   

20.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号