首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the soil-water sorption partitioning coefficient (Kd), this study quantified the spatial variation of 2,4-D sorption by soil in an undulating-to-hummocky terrain landscape near Minnedosa, MB, Canada. Herbicide sorption was most strongly related to soil organic matter content and slope position, with greatest sorption occurring in lower landscape positions with greater soil organic matter content. The relation between sorption and slope position was more pronounced under conventional tillage (CT) than under long-term zero-tillage (ZT). Using multivariate regression and three independent variables (soil organic matter content, soil clay content and soil pH), the prediction of herbicide sorption by soil was very good for CT (R2 = 0.89) and adequately for ZT (R2 = 0.53).  相似文献   

2.
Sorption is a fundamental process controlling the transformation, fate, degradation, and biological activity of hydrophobic organic contaminants in the environment. We investigated the kinetics, isotherms, and potential mechanisms for the sorption of two phthalic acid esters (PAEs), dibutyl phthalate (DBP) and dioctyl phthalate (DOP), on aged refuse. A two-compartment first-order model performed better than a one-compartment first-order model in describing the kinetic sorption of PAEs, with a fast sorption process dominating. Both the Freundlich and Dubinin–Astakhov (DA) models fit the sorption isotherms of DBP and DOP, with the DA model being of a better fit over the range of apparent equilibrium concentrations. The values of the fitting parameters (n, b, E) of the PAEs suggest nonlinear sorption characteristics. Higher predicted partition coefficient values and saturated sorption capacity existed in refuse containing larger quantities of organic matter. The sorption capacity of DOP was significantly higher than that of DBP. PAE sorption was dependent on liquid phase pH. Desorption hysteresis occurred in PAE desorption experiments, especially for the long-chain DOP. PAEs may therefore be a potential environmental risk in landfill.  相似文献   

3.
邻苯二甲酸二甲酯(DMP)是一种广泛使用的化工原料,也是一种环境内分泌干扰物.研究了海河沉积物和土壤对DMP的吸附解吸作用,以及颗粒物粒径、浓度和离子浓度对DMP在颗粒物上吸附的影响.研究发现DMP在土壤上的吸附符合Langmuir等温式,在海河沉积物上的吸附符合线性等温式,单位吸附量随着颗粒物浓度的增大而减小,离子浓度的增大而增大,粒径对DMP的吸附影响不明显.用DMP将海河沉积物污染并于室温老化1个月后进行解吸实验,被吸附DMP解吸速率前20 h较快,以后逐渐达到吸附平衡,解吸量较小.  相似文献   

4.
Effect of physical forms of soil organic matter on phenanthrene sorption   总被引:2,自引:0,他引:2  
Pan B  Xing B  Tao S  Liu W  Lin X  Xiao Y  Dai H  Zhang X  Zhang Y  Yuan H 《Chemosphere》2007,68(7):1262-1269
The sorption coefficient, K(OC), of phenanthrene (PHE) has been reported to vary with different types of organic matter, leading to uncertainties in predicting the environmental behavior of PHE. Among the studies that relate organic matter properties to their sorption characteristics, physical conformation of organic matter is often neglected. In this work, organic matter samples of different physical forms were examined for their sorption characteristics. Dissolved humic acids (DHA) showed significantly higher K(OC) than the corresponding solid humic acids (SHA) from which the DHAs were made. The K(OC) of DHAs was found to be related to polarity, whereas K(OC) of SHAs increased with aliphatic carbon content. Soil particles were treated with H(2)O(2) to remove organic matter, and humic acid was coated on H(2)O(2)-treated soil particles to make organo-mineral complexes at pH 4, 7 and 10. Although the nonlinear sorption was apparent for SHAs and H(2)O(2)-treated soil particles, the organo-mineral complexes formed using these two components at pH 4, 7 and 10 exhibited relatively linear sorption at organic carbon content, f(OC)>0.5%. These results indicate that organic matter of the same composition may have different sorption properties due to different physical forms (or conformations). Nonlinear sorption for the complexes formed at pH 4 with lower f(OC) (<0.5%) was also discussed.  相似文献   

5.
Chang CM  Wang MK  Chang TW  Lin C  Chen YR 《Chemosphere》2001,43(8):1133-1139
The predictive accuracy of using the one-dimensional advection–dispersion equation to evaluate the fate and transport of solute in a soil column is usually dependent on the proper determination of chemical retardation factors. Typically, the distribution coefficient (Kd) obtained by fitting the linear sorption isotherm has been extensively used to consider general geochemical reactions on solute transport in a low-concentration range. However, the linear distribution coefficient cannot be adequately utilized to describe the solute fate at a higher concentration level. This study employed the nonlinear equilibrium-controlled sorption parameters to determine the retardation factor used in column leaching experiments. Copper and cadmium transportation in a lateritic silty-clay soil column was examined. Through the explicit finite-difference calculations with a third-order total-variation-diminishing (TVD) numerical solution scheme, all results of the theoretical copper and cadmium breakthrough curves (BTCs) simulated by using the Freundlich nonlinear retardation factors revealed good agreement with the experimental observations.  相似文献   

6.
邻苯二甲酸酯类化合物土壤吸附系数的测定及相关性研究   总被引:8,自引:0,他引:8  
研究测定了邻苯二甲酸二甲酯(DMP)、二乙酯(DEP)、二丙酯(DPP)、二丁酯(DBP)、丁基苄基酯(BBP)和二异辛酯(DEHP)等6种化合物土壤吸附系数Koc,并研究了Koc与正辛醇一水分配系数Kow、水溶解度S之间的相关性,建立了相关方程式。  相似文献   

7.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48-72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K(d)) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

8.
In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.  相似文献   

9.
The contributions of organic matter and the mineral surface to the overall sorption of six nonpolar neutral organic compounds (1,2,4-trichlorobenzene, 1,4-dichlorobenzene, chlorobenzene, m-xylene, toluene, benzene) by five humic acid (HA)-coated sands with different fractions of organic carbon (f(oc)) ranging from 0.024% to 0.154% were evaluated on the basis of measured data and four different sorption models. Sorption of all six sorbates to both uncoated and heated sands was nearly linear due to the coverage of hydrophilic mineral surface with the ordered vicinal water region. Sorption of all six sorbates to the HA-coated sands was also essentially linear, and resulted from a combination of sorption to both organic matter and the mineral surface, with the dominance of either contribution depending on the properties of the sorbents (e.g., f(oc)) and the sorbates (e.g., K(ow)). A proposed two-component model for sorption including blocking effect was appropriate for quantifying the contributions of organic matter and the mineral surface to the overall sorption. However, conventional sorption models considering the contributions of both organic matter and the mineral surface provided essentially as good agreement between predicted and measured distribution coefficients as the more complicated, two-component model for sorption that takes into account mineral surface blocking by HA.  相似文献   

10.
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.  相似文献   

11.
Li H  Lee LS  Fabrega JR  Jafvert CT 《Chemosphere》2001,44(4):627-635
Predicting the reversible interactions between aromatic amines and soil is essential for assessing the mobility, bioavailability and exposure from contaminated sites. Reversible sorption mechanisms of aniline and alpha-naphthylamine were investigated by using single and binary solute sorption to five soils at several pH values, and by applying a distributed parameter (DP) model. The DP model assumes linear partitioning of the neutral species into soil organic matter domains and organic cation binding on negative-charged sites with the exchange coefficients represented by a Gaussian probability distribution. Sorption nonlinearity was attributed to cation exchange with varying site affinities, which was adequately simulated using the DP model. Greater uptake by hydrophobic partitioning and selectivity for cation exchange sites was observed for alpha-naphthylamine compared to aniline. Sorption of alpha-naphthylamine was not impacted quantitatively by aniline under those conditions examined; however, aniline sorption was reduced by alpha-naphthylamine with the largest reduction occurring in the soil with the lowest pH. DP model simulations showed that although hydrophobic partitioning increases with soil-solution pH, cation exchange still contributes significantly to the total sorption even at soil-solution pH values greater than pKa + 2.  相似文献   

12.
Several previously reported laboratory studies related to transport of solutes through packed columns were utilized to develop predictive relationships for mass-transfer rate coefficient. The data were classified into two groups: those obtained under rate-limited mass transfer between mobile and immobile water regions (physical nonequilibrium conditions), and those derived from rate-limited mass transfer between instantaneous and slow sorption sites (sorption nonequilibrium conditions). The mass-transfer coefficient in all these studies was obtained by fitting breakthrough data to a transport model employing a first-order rate limitations with a "constant" mass-transfer coefficient, independent of flow conditions. This study demonstrated that the mass-transfer coefficient in these models is dependent on system parameters including pore-water velocity, length-scale, retardation coefficient, and particle or aggregate size. Predictive relationships were developed, through regression analysis, relating mass-transfer coefficient to residence time. The developed relationships adequately estimated previously reported field mass-transfer values. Successful simulations of field desorption data reported by Bahr [J. Contam. Hydrol. 4 (1989) 205] further demonstrate the potential applicability of the developed relationships.  相似文献   

13.
Sorption of phenanthrene by soils contaminated with heavy metals   总被引:4,自引:0,他引:4  
Gao Y  Xiong W  Ling W  Xu J 《Chemosphere》2006,65(8):1355-1361
The fate of polycyclic aromatic hydrocarbons (PAHs) in soils with co-contaminants of heavy metals has yet to be elucidated. This study examined sorption of phenanthrene as a representative of PAHs by three soils contaminated with Pb, Zn or Cu. Phenanthrene sorption was clearly higher after the addition of heavy metals. The distribution coefficient (K(d)) and the organic carbon-normalized distribution coefficient (K(oc)) for phenanthrene sorption by soils spiked with Pb, Zn or Cu (0-1000 mg kg(-1)) were approximately 24% larger than those by unspiked ones, and the higher contents of heavy metals added into soils resulted in the larger K(d) and K(oc) values. The enhanced sorption of phenanthrene in the case of heavy metal-contaminated soils could be ascribed to the decreased dissolved organic matter (DOM) in solution and increased soil organic matter (SOM) as a consequence of DOM sorption onto soil solids. Concentrations of DOM in equilibrium solution for phenanthrene sorption were lower in the case of the heavy metal-spiked than unspiked soils. However, the decreased DOM in solution contributed little to the enhanced sorption of phenanthrene in the presence of metals. On the other hand, the sorbed DOM on soil solids after the addition of heavy metals in soils was found to be much more reactive and have far stronger capacity of phenanthrene uptake than the inherent SOM. The distribution coefficients of phenanthrene between water and the sorbed DOM on soil solids (K(ph/soc)) were about 2-3 magnitude larger than K(d) between water and inherent SOM, which may be the dominant mechanism of the enhanced sorption of phenanthrene by soils with the addition of heavy metals.  相似文献   

14.
Yang ZY  Zhao YY  Tao FM  Ran Y  Mai BX  Zeng EY 《Chemosphere》2007,69(10):1518-1524
Bioconcentration factor (BCF) is often assumed to be linearly associated with the octanol-water partition coefficient K(ow) for hydrophobic organic chemicals (HOCs). However, a large amount of data has suggested that the correlation between the logBCF and logK(ow) is curvilinear for HOCs. Similar curvilinear relationship has also been noticed for sorption of HOCs into poly(dimethyl)siloxane (PDMS), a polymer with cross-linked interior structures. So far no satisfactory explanation has been given to account for the deviation. In this study, we acquired additional experimental data to show that the curvilinear relationship between the log-based PDMS-coated fiber-water partition coefficient (logK(f)) and logK(ow) for polychlorinated biphenyls (PCBs) was indeed a reflection of the sorption process occurring in PDMS film other than experimental defects. The physical origin of the nonlinearity was pinpointed based on the theory of phase partitioning for HOCs. The linear relationship is observed if the solute molecule is considerably smaller than the size of a monomer unit of PDMS in that the Gibbs free energy required for cavity formation in PDMS is comparable to that in octanol. Higher free energy of cavity formation is needed to create sufficient free volume if the PCB molecular size is comparable to or larger than the monomer unit of PDMS. On the other hand, the free energy of cavity formation in octanol remains almost constant when this occurs, resulting in the observed curvilinear relationship. The proposed model adequately explains the observed data, as well as sheds lights into the physical origin of the steric interactions of large molecular size solute with the PDMS polymer network.  相似文献   

15.
Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils.  相似文献   

16.
A procedure was developed to obtain three size fractions (2360 < d(p) < 1000, 1000 < d(p) < 710, and 710 < d(p) < 425 microm) of stable aggregates from Koopveen peat soil by application of an intense mixing regime prior to sieving of the soil material. The organic matter content, aggregation structure and the microstructure of these aggregates were determined and the particles were artificially contaminated with naphthalene and phenanthrene via a solvent phase. A nonlinear Freundlich sorption isotherm was determined for the naphthalene contaminated soil aggregates (n = 0.39; K(F) = 1.13 x 10(-2) m(1.17) kg(-0.39)). The applicability of a mathematical model, that describes sorption equilibrium, intraparticle mass-transfer, and nonlinear bacterial degradation kinetics, was tested by fitting results of dynamic desorption and biodegradation experiments, generated in this study and earlier work on the peat soil aggregates. The experimental data were described adequately although strong variations in the values of the fit parameter, the intra-particle porosity (0.30 < epsilon < 0.88), were found. This indicates the necessity of further investigations.  相似文献   

17.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

18.
Huang YY  Wang SL  Liu JC  Tzou YM  Chang RR  Chen JH 《Chemosphere》2008,70(7):1218-1227
Humic acids (HAs) are a major component of soil organic matter which strongly affects the sorption behavior of organic contaminants in soils. To assess the sorption-desorption characteristics of organic compounds on HAs, the organic adsorbent is usually isolated using an acid-base extraction method followed by air-drying or freeze-drying. In this study, a peat soil from the Yangming mountain area of Taiwan was sampled and repeatedly extracted followed by either air-drying or a non-drying treatment (denoted DHAs and NDHAs, respectively). The sorption of 2,4,6-TCP on HAs was evaluated using the batch method. Kinetic sorption results indicated that DHAs exhibited a two-step first-order sorption behavior, involving a rapid sorption followed by a slow sorption. The slow sorption may be attributed to the diffusion of 2,4,6-TCP through the condensed aromatic domains of HAs. On the contrary, the sorption of 2,4,6-TCP on NDHAs was extremely rapid, and the sorption data did not fit existing kinetic models. Each HA sample exhibited a nonlinear sorption isotherm. Sorption nonlinearity (represented by Freundlich N values) and K(oc) had a positive relationship with aliphaticity for DHAs; however, nonlinearity and K(oc) correlated positively with aromaticity when NDHAs adsorbents were used. We conclude that the air-drying technique may artificially create a more condensed area, which strongly affects the sorption characteristics of HAs. Thus, an incorrect evaluation of the sorption capacity and its relationship with the chemical composition of HAs would arise following use of the air-drying method.  相似文献   

19.
The impact of contact time on pyrene sorptive behavior by a sandy-loam soil   总被引:7,自引:0,他引:7  
Batch experiments with pyrene (PYR) were conducted to quantify the effect of contact time on its sorption and desorption behavior by a sandy-loam soil. Twenty-four and 48 h contact times were chosen for the nonequilibrium conditions and 240 h for the pseudoequilibrium study. All times was selected based on the kinetic results. The nonlinear, pseudoequilibrium sorption isotherm was fit to a two-stage Freundlich model: 3-7 mg/l for the first stage and 7-15 mg/l for the second stage. A substantial fraction of the sorbed PYR was not desorbed within the given desorption time. The reason of hysteresis was found to be a sorption enhancement due to soil hydration which provided more sorption sites. A desorption enhancement at 240-h desorption steps was attributed to the increased dissolved organic matter evolution. This study also found that both soil organic matter and clay materials had an equal role in PYR sorption enhancement and desorption resistance.  相似文献   

20.
Chi FH  Amy GL 《Chemosphere》2004,55(4):515-524
In groundwater systems, dissolved natural organic matter (NOM) can influence the mobility of organic contaminants by altering the contaminant behavior in water and solid phases. The transport of anthracene and benz(a)anthracene (B(a)A) was studied in the presence and absence of NOM and/or soil organic matter (SOM) in column experiments. The results show that sorption are related to the properties of polycyclic aromatic hydrocarbons (PAHs), NOM and SOM. In the Fe-quartz media, the amount of NOM (20 mg/l) in solution had a little effect on increasing the apparent solubility of anthracene and countering increased anthracene sorption. In the natural (Bemidji) soil, Suwannee river fulvic acid (SRFA, 20 mg/l) and Suwannee river humic acid (SRHA) in water did not compete with SOM for anthracene, indicating that SOM has higher partition efficiency for anthracene. It was also observed that slow diffusion through an organic phase apparently caused most of the observed tailing in column breakthrough curves (BTCs). Even though the fOC of washed Bemidji sediment was very low, the transport of B(a)A was retarded significantly, however, and the transport of B(a)A was shown to be facilitated by dissolved NOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号