共查询到17条相似文献,搜索用时 46 毫秒
1.
通过小角光散射(small-angle light scattering,SALS)实验确定出活性污泥絮体的分形区域,对絮体粒径分布进行了拟合分析,采用原子力显微镜(AFM)和激光共聚焦扫描显微镜(CLSM)对絮体在不同尺度下的形貌进行了观测.结果显示,污泥絮体是由一系列的絮团结合而成,絮体表面凹凸不平,有各种"孔洞","缝隙",絮体内部存在一系列的孔隙.较大尺度的絮体同时存在多种孔道结构,构成絮体中营养物和水流的运输通道;污泥絮体在0.5~50μm之间具有明显的分形结构,表明活性污泥絮体在较小的粒径时已经具有一定的分形特征,活性污泥的粒度分布属于Gamma分布方式,证明污泥絮体的成长过程是一种絮团-絮团的凝聚过程. 相似文献
2.
利用小角度激光光散射研究阳离子有机高分子絮凝剂的絮体粒径和絮体结构 总被引:5,自引:0,他引:5
利用小角度激光光散射在线监测技术研究了不同阳离子有机高分子絮凝剂对带负电荷的高岭土颗粒体系的絮凝动力学和絮体结构.对于高电荷密度的聚二甲基二烯丙基氯化铵(PDADMAC),由于分子量低其初始絮凝反应速度较慢,最终形成的絮体也较小.絮凝过程中,其絮体结构发生重组和排列,分形维数从1.83升高到2.09,所形成的絮体密实.对于低电荷密度的2种阳离子聚丙烯酰胺(CPAM),因其分子量大投药量高,絮凝反应速度较快;但其絮体的分形维数较小且在絮凝反应中基本保持不变,形成的絮体结构开放和松散.基于有机高分子对高岭土体系浊度和zeta电位的影响,结合絮凝动力学和絮体结构分析,结果表明,PDADMAC絮凝机理是电中和作用,而随着分子量的增加和电荷密度的降低,CPAM则主要通过吸附架桥作用产生絮凝. 相似文献
3.
活性污泥絮体的性状及其沉降性能的探讨 总被引:2,自引:0,他引:2
活性污泥法是最常见的污水处理工艺。该方法的关键是形成了活性污泥絮体。而这些絮体的性状,如表面性质(胞外聚合物、表面电荷、疏水性)和形态结构(粒径、孔隙率、分形维数)将影响后续固液分离过程的效率。目前一系列研究活性污泥絮体性状的实验测试方法已经建立。了解污泥表面基本信息,探究污泥絮体形态结构特征,充分认识污泥沉降性能与污泥絮体的物理、化学、生物因素的相关联系,可为改善固液分离效果提供新的信息和视角;并为活性污泥系统的参数设计,实际运行调控提供理论依据。 相似文献
4.
基质种类对活性污泥絮体性状的影响 总被引:3,自引:1,他引:2
利用葡萄糖、淀粉、乙酸钠和苯酚4种典型基质,分别在4个相同的序批式反应器(Sequencing Batch Reactor,SBR)中培养活性污泥,并研究了基质种类对活性污泥絮体性状的影响.结果表明,以葡萄糖为底物培养的活性污泥胞外多糖含量最少,而苯酚所培养的活性污泥胞外蛋白质最多;从形成的EPS总量来看,苯酚最多,乙酸钠次之,葡萄糖和淀粉较少.不同基质培养的污泥Zeta电位也有一定差别,这是由EPS中多糖和蛋白质的比例不同造成的.红外分析表明,4种基质培养的污泥EPS中的主要基团较为相似,羧基、醇羟基、羧酸、酰胺和多聚糖均是EPS中的主要基团.此外,进水基质对活性污泥絮体的粒度分布及分形结构也有重要影响. 相似文献
5.
絮体分形结构对沉淀速度影响研究 总被引:4,自引:2,他引:4
利用基于微天平的质量-粒径法和基于改进粒子图像测速技术的自由沉淀法对高岭土、腐殖酸絮体的分形结构进行了研究.结果表明,质量-粒径法得到的铁盐絮体三维分形维数为2.14~2.28,明显大于铝盐絮体的1.75~1.83,铁盐絮体结构更为致密,而铝、铁-腐殖酸絮体比相应的高岭土絮体分形维数要小.絮体分形维数与沉淀速度具有良好的对应关系,分形维数越大,絮体沉淀速度越大.质量粒径法与自由沉淀法求出的絮体分形维数相吻合,分形絮体沉淀速度不再满足Stokes沉淀速度公式. 相似文献
6.
絮凝条件对絮体分形结构的影响 总被引:17,自引:3,他引:17
在85kg/m3的含沙高浊水中投加阳离子高分子聚合物,借助图像分析技术与沉降技术分析探讨了不同絮凝条件下泥沙絮凝形态学参数:絮体粒径、絮体有效质量密度、絮体自由沉速、浑液面沉速与上清液余浊等的变化规律.利用表征参数“分维”定量控制不同絮凝条件(如搅拌速率、搅拌时间、高分子浓度等)对含沙高浊水絮体结构分形特性的影响.实验证明,不合适的絮凝条件将导致絮体分形构造疏松脆弱,分维值低.絮凝条件合适时(快速絮凝强度为:r1=300r/min,t1=10s;慢速絮凝强度:r2=120r/min,t2=180s;CP浓度:0.1%),絮体分形结构处于最佳状态.该状态下的絮体具有粒径较大、沉速快、有效质量密度高、粒度分布均匀,分维值最高(D3=2.16)的特点.而且,由静沉实验测得浑液面沉速高,上清液余浊也低.泥沙絮体分形结构达最佳时的混凝性能、沉降性能与结构密实性均较理想. 相似文献
7.
引入分形维数的絮体粒径分布规律及其守恒关系 总被引:9,自引:0,他引:9
采用显微摄影技术,通过混凝实验分析了腐植酸絮凝体的粒径分布规律.结果表明,腐植酸絮体的粒径呈现对数正态分布.从混凝动力学基本方程出发,考虑到腐植酸絮体构造的不规则性(分形维数),分析了颗粒数量、颗粒平均体积和标准偏差之间存在的守恒关系,该守恒关系可以大大简化基本方程的求解,更简便地预测混凝过程中絮体的粒径分布. 相似文献
8.
9.
聚合氯化铁-腐殖酸(PFC-HA)絮体的粒度和分形维数的动态变化 总被引:1,自引:1,他引:1
通过采集PFC-HA絮体的单个样品和拍摄它们的二维图像,研究了在不同混凝条件下絮体的粒度和分形维数的变化.结果表明,原水pH的下降滞后了PFC-HA絮体的出现.原水pH≥7.0时,随着投药量的增加,PFC-HA絮体的分形维数D2(lgA-lgdL)和D3(lgV1-lgdL)随之降低,表明絮体的结构越来越疏松;而原水pH=5.0时,PFC-HA絮体的分形维数存在波动.在PFC的最佳投药量时,水力条件的优化可以提高HA的去除效果,但随着原水pH的下降,HA去除效果的提高程度也随之减小.在最佳水力条件下,PFC-HA絮体的粒度为数百微米,其分形维数值较大,表明絮体的结构较为密实.此外,PFC-HA絮体的粒度分布具有(类)分形特征,最佳水力条件下正的D.值表明絮体的粒度分布趋向平稳.在整个混凝搅拌过程中,PFC-HA絮体的分形维数的变化是与混凝的溶液化学条件、搅拌时间和分形维数类型有关,其D2具有先上升后下降的趋势,这一过程中絮体结构先趋向密实,然后趋向疏松.而且慢速搅拌过程中絮体的尺度也是先增加后下降. 相似文献
11.
活性污泥与消化污泥的脱水特性及粒径分布 总被引:3,自引:0,他引:3
对活性污泥和消化污泥的脱水特性和粒径分布进行了研究,分析了2种污泥胞外聚合物(EPS)含量的差异以及生物相的变化特征和机理.结果表明,表征脱水性能好坏的毛细吸收时间(CST),新鲜活性污泥为9.84 s,消化污泥增加到607.5 s,消化污泥固体颗粒从悬浮液分离所需的时间变长,脱水性能变差.其原因一方面是消化过程使EPS中蛋白质和多糖降解,另一方面是大大降低了消化污泥中原生动物数量,减少了促进微生物凝聚的EPS物质向污泥中的释放.消化污泥EPS含量为123 mg/g(以干污泥计,下同),比EPS含量为540 mg/g的活性污泥减少了77%.EPS的降解使较大的污泥颗粒分解成较小的污泥颗粒,活性污泥占体积最大的颗粒粒径是133 μm,消化污泥下降到44.6 μm,活性污泥的平均粒径是132.6 μm,消化污泥仅为70.48 μm,结果导致消化污泥脱水性能变差. 相似文献
12.
采用图像法和沉降柱法分别研究了A2/O工艺中好氧污泥絮体的形貌、粒度分布、低维分形维数和沉降速率、有效密度、空隙率以及质量分形维数,并尝试探讨了上述相关性质与这些污泥宏观操作性质(沉降、压缩、脱水和稳定性)相关的各种理化指标以及胞外高分子物质(EPS)的含量之间的变化关系.结果表明,污泥絮体呈现不规则的形貌,表面具有空隙.其有效密度一般随着其粒径的增加而降低,而空隙率和沉降速率却呈现与有效密度相反的变化趋势,这些均表明了污泥絮体的分形结构的存在.2次所采集的污泥絮体的中位直径分别为248.81、 332.86 μm,有效密度的平均值分别为0.004 0、 0.007 2 g·cm-3,自由沉降速率的平均值分别为2.67、 4.79 mm·s-1,空隙率的平均值分别为0.94、 0.89,一维分形维数分别为1.03、 1.19,二维分形维数分别为1.64、 1.84,采用基于Logan经验公式的有效密度-最大直径的双对数关系确定的质量分形维数分别为1.74、 2.29.尽管第2次所采集的污泥絮体较为密实,但其表面粗糙程度却比第1次的低.此外,研究中发现絮凝能力较高或负电荷较高的A2/O好氧污泥絮体具有高的SVI和ZSV值;分形维数较低的污泥具有高的剪切敏感性和低絮体强度,相应的污泥稳定性低;EPS总量高的污泥脱水性能差,EPS中蛋白质含量高的污泥其表面电荷也较高. 相似文献
13.
采用图像法和沉降柱法分别研究了A2/O工艺中好氧污泥絮体的形貌、粒度分布、低维分形维数和沉降速率、有效密度、空隙率以及质量分形维数,并尝试探讨了上述相关性质与这些污泥宏观操作性质(沉降、压缩、脱水和稳定性)相关的各种理化指标以及胞外高分子物质(EPS)的含量之间的变化关系.结果表明,污泥絮体呈现不规则的形貌,表面具有空隙.其有效密度一般随着其粒径的增加而降低,而空隙率和沉降速率却呈现与有效密度相反的变化趋势,这些均表明了污泥絮体的分形结构的存在.2次所采集的污泥絮体的中位直径分别为248.81、332.86μm,有效密度的平均值分别为0.0040、0.0072g·cm-3,自由沉降速率的平均值分别为2.67、4.79mm·s-1,空隙率的平均值分别为0.94、0.89,一维分形维数分别为1.03、1.19,二维分形维数分别为1.64、1.84,采用基于Logan经验公式的有效密度-最大直径的双对数关系确定的质量分形维数分别为1.74、2.29.尽管第2次所采集的污泥絮体较为密实,但其表面粗糙程度却比第1次的低.此外,研究中发现絮凝能力较高或负电荷较高的A2/O好氧污泥絮体具有高的SVI和ZSV值;分形维数较低... 相似文献
14.
膜-生物反应器和传统活性污泥工艺的比较 总被引:48,自引:4,他引:48
在运行条件一致的情况下把膜-生物反应器(MBR)和传统活性污泥工艺(CAS)进行了比较研究.试验结果表明,MBR具有比CAS更为稳定良好的出水水质,其平均出水COD浓度为55.5mg/L,低于CAS工艺(79.7mg/L).MBR系统中由于膜对大分子物质的截留作用,运行前120d出现溶解性微生物产物的积累,但随着微生物的驯化,这些积累的微生物产物最后得到降解.CAS中未发生微生物产物的积累.CAS出水、MBR上清液以及MBR出水中的物质组成差别很大.CAS出水和MBR上清液中分子量大于60000的高分子物质与小于3000的小分子物质都占有相当大的比例,其中高分子物质在MBR上清液中的含量高于CAS系统;MBR出水中则主要是分子量小于3000的小分子物质.MBR污泥粒径较小,使得氧扩散速率得到提高. 相似文献
15.
本研究采用过氧化钙对活性污泥进行预处理,深入分析了调理过程中污泥过滤脱水性能、絮体结构以及反应动力学的变化特性,探讨了亚铁离子协同过氧化钙处理对污泥特性的影响.结果表明,经过CaO_2处理后,污泥的过滤脱水性能先改善后恶化,当投加量(以TSS计)为20 mg·g~(-1)时,污泥的过滤脱水效果达到最佳.同时,污泥絮体结构变得疏松破碎,其上清液有机物浓度出现了明显的上升,污泥得到了有效裂解.污泥溶解反应过程遵循零级反应动力学模型,反应速率常数为15.2mg·L~(-1)·h~(-1).此外,亚铁离子和CaO_2协同处理可以进一步强化污泥中大分子有机物的裂解释放,同时,反应过程中形成铁离子的絮凝作用可以实现污泥絮体结构的重建,从而改善污泥过滤脱水性能.该研究成果为CaO_2及其联用处理技术在污泥处理过程中的应用提供了必要的理论依据. 相似文献
16.
17.
活性污泥胞外聚合物提取方法的研究 总被引:1,自引:0,他引:1
对两种不同来源的活性污泥中EPS的提取效率进行了研究,采用的提取方法有NaOH法,阳离子交换树脂法(CER法),加热法和离心法。结果表明,CER法是两种污泥EPS提取中最有效的方法。经过16h的提取,EPS中DNA的含量分别为0.73%和1.61%,这表明EPS的提取没有受到胞内物质的污染。两种污泥EPS的提取量分别为74mg/gVSS和80mg/gVSS,其中多糖和蛋白质是EPS的主要成分。在研究中,CER法最佳提取时间为8h,高搅拌强度和CER投加量都有利于EPS提取量的增加。 相似文献