首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leachate, the hazardous liquid that percolated through the refuse layers of a sanitary landfill, if it leaks through the landfill lining system, can become a serious source of groundwater pollution. In the past, leaks have been detected in many landfills lined with flexible membrane liners (FML) whose failure may be attributed to flaws such as imperfect seaming, rips, and tears of the membrane, or from chemical attack that dissolves the membrane. Recent studies have shown that composite lining systems which include either a clayey subbase or a layer of geotextile in addition to the FML, can substantially reduce the leakage of leachate. Therefore in this study, four different lining systems are proposed and evaluated to determine their effectiveness in controlling leachate flow under various degree of flaws (referred to as leakage fraction LF) in the FML. The Hydrologic Evaluation of Landfill Performance (HELP) computer model of the Environmental Protection Agency of USA, currently the most widely accepted model for predicting the performance of leachate collection systems in that country, is used to evaluate the following lining systems: (1) a single FML or liner, (2) a single FML with a clayey composite, (3) a single FML with a geotextile called Claymax, and (4) a double FML. Based on the climatic conditions and the present lining construction cost of Alaska, the study shows that a single FML or liner is the most economical but it is also the least effective in controlling leachate flow. Design (3), a single FML with a geotextile, costs about 50 percent more but it reduces the leakage of leachate by several orders. Design (2) is also effective but the cost incurred in constructing a 3 feet thick clayey subbase is prohibitive and thus to effectively and economically minimize the hazards of potential groundwater contamination by leachate, Design (3) is recommended as the composite lining system for future landfill sites.  相似文献   

2.
The effects of tobacco waste (TW) application to the soil surface on the accumulation of Tobacco mosaic virus (TMV) in clay and loamy sand textural soils at various depths were investigated in two different fields. The tobacco waste had been found to be infected with TMV. Eighteen months after TW application to the soil surface, soils were sampled at 20 cm intervals through to 80 cm depth. The DAS-ELISA method was performed to determine infection of soil with TMV. The viruses persisted in clay soil for a long period compared with loamy sand soil. There was no accumulation of TMV at any depth of loamy sand soil in Experimental Field 2. TMV adsorption to soil particles in 0-60 cm depth of clay soil was determined in all TW treatments in Experimental Field 1. The highest ELISA Absorbance (A405) values in all treatments were determined in the 20-40 cm soil depth that had the highest clay content. ELISA A405 values of TMV at different depths of clay soil gave significant correlations with clay content (r = 0.793**), EC values (r = 0.421**) and soil pH (r = -0.405**). Adsorption of TMV to net negatively charged clay particle surfaces increased with increasing EC values of soil solution. Decreasing soil pH and infiltration rate increased adsorption of TMV to clay particles. Higher infiltration rate and lower clay content in loamy sand soil caused leaching of TMV from the soil profile.  相似文献   

3.
The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.  相似文献   

4.
A tuneable, high pulse-repetition-frequency, solid state Nd:YAG pumped titanium sapphire laser capable of generating radiation for the detection of OH, HO2, NO and IO radicals in the atmosphere by laser induced fluorescence (LIF) has been developed. The integration of the laser system operating at 308 nm into a field measurement apparatus for the simultaneous detection of hydroxyl and hydroperoxy radicals is described, with detection limits of 3.1 x 10(5) molecule cm(-3) (0.012 pptv in the boundary layer) and 2.6 x 10(6) molecule cm(-3) (0.09 pptv) achieved for OH and HO2 respectively (30 s signal integration, 30 s background integration, signal-to-noise ratio = 1). The system has been field tested and offers several advantages over copper vapour laser pumped dye laser systems for the detection of atmospheric OH and HO2 radicals by LIF, with benefits of greater tuning range and ease of use coupled with reduced power consumption, instrument footprint and warm-up time. NO has been detected in the atmosphere at approximately 1 ppbv by single photon LIF using the Alpha 2Sigma+ <-- Chi 2Pi1/2 (0,0) transition at 226 nm, with absolute concentrations in good agreement with simultaneous measurements made using a chemiluminescence analyser. With some improvements in performance, particularly with regard to laser power, the theoretical detection limit for NO is projected to be approximately 2 x 10(6) molecule cm(-3) (0.08 pptv). Whilst operating at 445 nm, the laser system has been used to readily detect the IO radical in the laboratory, and although it is difficult to project the sensitivity in the field, an estimate of the detection limit is < 1 x 10(5) molecule cm(-3) (< 0.004 pptv), well below previously measured atmospheric concentrations of IO.  相似文献   

5.
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).  相似文献   

6.
We made an inventory of nitrate (NO3-N) enrichment in surface and groundwater systems in the Hooghly district of India owing to intensive farming with high fertilizer doses as a function of quantity of fertilizers use, soil characteristics, types of crop grown, depth of groundwater sampling and also N-load in soil profiles. Water samples were collected from different sources at 412 odd sites spread over in 17 blocks of the district along with representative soil profiles. On average, the study area had high clay and NO3-N in soil profiles with an increasing and decreasing trends along depth, respectively. The NO3-N content both in surface and groundwater varied from 0.01 microg mL(-1) to 4.56 microg mL(-1), being well below the threshold limit of 10 microg mL(-1) fixed by WHO for drinking purpose. The content decreased with increasing depth of wells (r = -0.39**) and clay content of soil profiles (r = -0.31**). It, however, increased with increasing rate of fertilizer application (r = 0.72**), NO3-N load in soil profiles (r = 0.85**) and was higher in areas where shallow--rather than deep-rooted crops are grown. Results indicated even under fairly high quantity of fertilizer use, groundwater of the study area is safe for drinking purpose.  相似文献   

7.
Two spectrophotometric methods have been developed for the determination of nitrite using dapsone (DAP) with alpha-naphthol and 4-amino-5-hydroxynapthalene-2,7-disulphonic acid monosodium salt (AHNDMS) as chromogenic reagents with maximum absorbance wavelength at 540 and 520 nm respectively. For the method that utilizes dapsone with alpha-naphthol (DAP-alpha-naphthol), the beer's law range is obeyed between 0.05-0.8 microg ml(-1) with molar absorptivity of 5.749 x 104 l mol(-1) cm(-1). The second method that uses dapsone with AHNDMS (DAP-AHNDMS), the beer's law is valid over the range 0.2-1.4 mug ml(-1) and molar absorptivity 2.44 x 104 l mol(-1) cm(-1). The common interfering ions in the analytical procedures have been studied. This proposed methods are reliable, reproducible and have been successfully applied to determine nitrite in various water sources of environmental interest.  相似文献   

8.
The objectives of this study were to use both parametric and probabilistic approaches to analyze water column concentrations of both salinity (24,845 measurements) and boron (13,028 measurements) from numerous investigations conducted in the San Joaquin River watershed from 1985 to 2002 to assess spatial and temporal trends and determine the probability of exceeding regulatory targets during both the irrigation and non-irrigation season. Salinity and boron concentrations from 26 mainstem and tributary sites were highly correlated based on this 17 yr data set. Generally, salinity and boron concentrations were higher in winter/spring and lower in summer/fall; higher concentrations of both constituents were reported in tributary sites when compared with the mainstem San Joaquin River. Approximately half the sites showed showed a negative correlation between flow and both constituents. Concentrations of both salinity and boron were somewhat variable with flow conditions for the other sites. Both linear and curvilinear trends were inconsistent over time. The salinity 90th centiles for the 26 sites ranged from 143 to 7,559 micros cm(-1) with the highest 90th centiles in tributary sites. Probabilistic analysis of salinity 90th centiles by year for five sites with extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the salinity targets during either the irrigation (700 microm cm(-1)) or non-irrigation (1,000 micros cm(-1)) season was greater than 19% for all but three sites. The boron 90th centiles for the 26 sites ranged from 0.41 to 13.6 mg L(-1) with the highest 90th centiles from tributary sites. Probabilistic analysis of the boron 90th centile values by year for the five sites with the most extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the boron target during the irrigation season (0.80 mg L(-1)) and non-irrigation (1.0 mg L(-1)) season was greater that 18% for all but three sites. Results from this analysis have important regulatory implications as targets for both salinity and boron are frequently exceeded at various sites in the San Joaquin River watershed.  相似文献   

9.
Many studies investigating the ecotoxicological impacts of industrial effluents on fresh-water biota utilize standardized test species such as the daphnids, Ceriodaphnia dubia, Daphnia magna, and the fathead minnow, Pimephales promelas. Such species may not be the most predictive or ecologically relevant gauges of the responses of instream benthic macroinvertebrates to certain stressors, such as total dissolved solids. An indigenous species approach should be adopted, using a sensitive benthic collector-filterer following development of practical laboratory bioassays. In the Leading Creek Watershed (southeast Ohio), an aggregated approximately 99% reduction in mean mayfly abundance for all impacted sites was observed below a coal-mine effluent with mean specific conductivity (SC) of 8,109 (7,750-8,750) microS cm(-1). The mayfly, Isonychia, was exposed for 7-days to a simulation of this effluent, in lotic microcosms. Based on lowest observable adverse effect concentrations, Isonychia survival was a more sensitive endpoint to SC (1,562 microS cm(-1)) than were 7-day C. dubia survival and fecundity (3,730 microS cm(-1)). Isonychia molting, a potentially more sensitive endpoint, was also examined. Using traditional test species to assess discharges to surface water alone may not adequately protect benthic macroinvertebrate assemblages in systems impaired by discharges high in SC.  相似文献   

10.
This study is part of a three-year project on biogenic volatile organic compound (VOC) emissions from trees of the temperate warm Atlantic rainforest found in the metropolitan area of Sao Paulo City (MASP). No study of VOC emission rates from plant species has been carried out in the temperate warm Atlantic rainforest of Brazil prior to this work. Eleven species were selected (Alchornea sidifolia, Cupania oblongifolia, Cecropia pachystachia, Syagrus romanzoffiana, Casearia sylvestris, Machaerium villosum, Trema micrantha, Croton floribundus, Myrcia rostrata, Solanum erianthum and Ficus insipida) and some of them were studied in urban, sub-urban and forest areas inside the MASP in order to evaluate biogenic VOC composition at sites characterized by different emission sources. Biogenic VOC emissions were determined by placing branches of plants in a dynamic enclosure system, an all-Teflon cuvette, and by sampling the compounds in the air leaving the cuvette. Pre-concentration using adsorbents to retain the VOC, followed by GC-MS after thermal desorption of the sample, was employed to determine the amount of biogenic hydrocarbons. The collection of carbonyl compounds on a 2,4-dinitrophenylhydrazine coated silica followed by HPLC-UV was used to analyze low molecular weight carbonyl compounds. Emission rates of isoprene, alpha-pinene, camphene and limonene ranged from 0.01 to 2.16 microg C h(-1) g(-1) and emission rates of aldehydes (C(2)-C(6)), acrolein, methacrolein and 2-butanone ranged from 1.5 x 10(-2) to 2.3 micro g C h(-1) g (-1). Ambient and leaf temperatures, relative humidity, light intensity, O(3) and NO(x) levels in the local atmosphere were monitored during experiments. It was possible to identify different biogenic VOCs emitted from typical plants of temperate warm Atlantic rainforest. The emission rates were reported as a function of the type of site investigated and were only provided for compounds for which quantification was feasible. Other biogenic compounds were only identified.  相似文献   

11.
Modelling and mapping of copper runoff for Europe   总被引:1,自引:0,他引:1  
A predictive runoff rate model for copper has been refined and used to generate copper runoff maps for Europe. The new model is based on laboratory and field runoff data and expresses the runoff rate R (g m(-2) yr(-1)) through two contributions, both with a physical meaning: R = (0.37SO(0.5)(2) = 0.96 rain10(-0.62 pH) (cos(theta)/cos(45 degree)). Input parameters are the SO(2) concentration (microg m(-3)), pH, amount of rain (mm yr(-1)), and surface angle of inclination (theta). The first contribution originates from dry periods between rain events (the first-flush effect) and the second from the rain events. The dry term has been refined in comparison to the original model by assuming a mass balance between measured corrosion mass loss, calculated copper retention in the patina and predicted copper runoff. The refined model predicts 76% of all reported runoff rates, worldwide, within 35% from their measured value. This includes sites with low SO(2) concentration, where the original model erroneously predicted higher runoff rates than corrosion rates. Based on environmental data from the EMEP programme for the years 1980-2000, the new model has been used to derive runoff rate maps for Europe with 50 x 50 km grid resolution. The runoff mapping shows a substantial reduction in runoff rate over the investigated time period, and with copper runoff rates now generally less than 2 g m(-2) yr(-1).  相似文献   

12.
This paper describes the chemistry of porewater when constructing different soil layers on acidic weathered rock of a closed mine to remediate the surface environment. Three cases were set on a flat surface of the site, all under different layer systems. Case 1 was only composed of weathered rocks. A top neutralization layer was constructed on the weathered rocks in case 2, whereas both an upper low-permeable and middle neutralization layers were constructed on the weathered rocks in case 3. The low-permeable layer of 30?cm thick consists of clay, and the neutralization layer of 30?cm thick consists of the mixture of the weathered rock and calcium carbonate as a neutralizer. Porewater sampling systems and soil sensors to measure temperature, water content, and electrical conductivity were set at different depths. In case 1, steadily high concentrations of heavy metals were observed regardless of the depth, and the pH ranged from 2 to 4. In cases 2 and 3, a dramatic decrease in concentrations of heavy metals was observed, even below the neutralization layer. For both cases, pH values were circumneutral. There were no significant seasonable changes in heavy metals concentrations and pH of porewater by considering the temperature and precipitation. In addition, the water content of the layers in case 3 fluctuated more mildly than that in cases 1 and 2, indicating that the low-permeable layer reduced the rate of infiltration. Therefore, a significant reduction in the load of heavy metals released from the site can be achieved by both implementing neutralization and low-permeable layers.  相似文献   

13.
Surface soil (0-5 cm) samples from 17 sampling sites including different functional areas at Ji'nan city in Shandong Province of China were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). The total PAH concentrations were in the range from 1.31 mg kg(-1) to 254.08 mg kg(-1) (dry weight), and the average level of total PAHs was 23.25 mg kg(-1). The highest total PAHs concentrations were found in steel and iron plant at industrial areas. The total PAHs concentrations in industrial areas were markedly higher than those in other different functional areas. According to comparing total PAHs concentration in Ji'nan city to that of other urban areas, it was found that total PAHs concentrations were 6 to 137 times higher than other areas because of some specific sampling sites such as steel and iron plant and one main roadside. The results showed that PAHs in topsoil of Ji'nan city were suffered from strong pyrogenic influence, especially in industrial areas. However about 52.9% soil samples were mainly originated from both pyrogenic and petrogenic mixed sources based on Flu/Pyr ratios and Phe/Ant ratios. Furthermore, It was found that all individual PAHs except Fle were significantly correlated (P < 0.01) with LMW, HMW, total PAHs and SOM, and individual PAHs except Fle in soils were significantly correlated (P < 0.01) with each other. The nemerow composite index to assess the environmental quality showed that the soil sample of steel and iron plant in industrial areas and one main roadside were heavy pollution of PAHs, and about 47% soil sampling sites were safety, about 53% soil sampling sites were got different grades of PAHs pollution.  相似文献   

14.
Rapid infiltration basins (RIBs) are effective tools for wastewater treatment and groundwater recharge, but continuous application of wastewater can increase soil P concentrations and subsequently impact groundwater quality. The objectives of this study were to (1) investigate the effects of reclaimed water infiltration rate and "age" of RIBs on soil P concentrations at various depths, and (2) estimate the degree (percentage) of sorption equilibrium reached between effluent P and soil attained during reclaimed water application to different RIBs. The study was conducted in four contrasting cells of a RIB system with up to a 25 year history of secondary wastewater application. Soil samples were collected from 0 to 300 cm depth at 30 cm intervals and analyzed for water extractable phosphorus (WEP) and oxalate extractable P, Al, and Fe concentrations. Water extractable P and P saturation ratio (PSR) values were generally greater in the cells receiving reclaimed water compared to control soils, suggesting that reclaimed water P application can increase soil P concentrations and the risk of P movement to greater depths. Differences between treatment and control samples were more evident in cells with longer histories of reclaimed water application due to greater P loading. Data also indicated considerable spatial variability in WEP concentrations and PSR values, especially within cells from RIBs characterized by fast infiltration rates. This occurs because wastewater-P flows through surface soils much faster than the minimum time required for sorption equilibrium to occur. Studies should be conducted to investigate soil P saturation at deeper depths to assess possible groundwater contamination.  相似文献   

15.
3, 4-Dihydroxybenzaldehydeisonicotinoylhydrazone was prepared, characterized with spectral analyses and used for developing a new method for the simple, sensitive and rapid spectrophotometric determination of vanadium(V) which gives maximum absorbance at wave length 360 nm. The metal ion gives a yellow colored complex with 3, 4-DHBINH in acetate buffer of pH 5.5 with 1:1 (metal:ligand) composition. The method obeys Beer's law in the range 0.5-5.3 mug mL(-1) of vanadium(V). The molar absorptivity and Sandell's sensitivity were found to be 1.29 x 10(4) L mol(-1) cm(-1) and 0.003949 mug cm(-2) respectively. The correlation co-efficient of the V(V)-3, 4-DHBINH complex was 0.992 which indicated an excellent linearity between the two variables. The repeatability of the method was checked by finding the relative standard deviation (RSD) as 0.424% (n = 5), and its detection limit 0.01677 mug mL(-1) of vanadium(V). The instability constant of the method was calculated by Asmus' method as 4.1666 x 10(-3). The interfering effect of various cations and anions were also studied. The proposed method was successfully applied to the determination of vanadium(V) in environmental samples (water and soil) tobacco leaves and alloy samples. The validity of the method was tested by comparing the results with those obtained using an atomic absorption spectrophotometer.  相似文献   

16.
We present in this paper fifteen years' measurements, from March 1991 to September 2005, of stratospheric NO2 vertical columns measured by a SAOZ zenith-sky visible spectrometer. The instrument spent most of its time at Aberystwyth, Wales, with occasional excursions to other locations. The data have been analysed with the WinDOAS analysis program with low-temperature high-resolution NO2 cross-sections and fitting a slit function to each spectrum. Because of a change in detector in May 1998 there is some uncertainty about the relative changes before and after this date, which are partially constrained by the results of an intercomparison exercise. However, the effect of the Mt Pinatubo aerosol cloud is very evident in the data from 1991-94, with a decrease of 10% in NO2 in the summer of 1992 (the SAOZ was located in Lerwick, Scotland during the winter of 1991-92 and observed very low NO2 values but these cannot be directly compared to the Aberystwyth data). To focus more on interannual and long-term variations in NO2, a seasonal variation comprising an annual and semi-annual component was fitted to the morning and evening twilight separately from 1995 to the present. This fit yielded average NO2 columns of 4.08 x 10(15) cm(-2) and 2.68 x 10(15) cm(-2) for the evening and morning twilight, respectively, with a corresponding annual amplitude of +/-2.08 x 10(15) cm(-2) and +/-1.50 x 10(15) cm(-2). Departures from the fitted curve show a trend of 6% per decade, consistent with that reported elsewhere, for the period 1998-2003, but in the past two years a distinct interannual variation of amplitude of approximately 8% has emerged.  相似文献   

17.
A migratory population of 78 pairs of Osprey (Pandion haliaetus) nesting along the Willamette River in westernOregon was studied in 1993. The study was designed to determinecontaminant concentrations in eggs, contaminant concentrationsin fish species predominant in the Ospreys diet, andBiomagnification Factors (BMFs) of contaminants from fish specieseaten to Osprey eggs. Ten Osprey eggs and 25 composite samplesof fish (3 species) were used to evaluate organochlorine (OC)pesticides, polychlorinated biphenyls (PCBs), polychlorinateddibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans(PCDFs). Mercury was also analyzed in fish. Geometric meanresidues in Osprey eggs were judged low, e.g., DDE 2.3 g g-1 wet weight (ww), PCBs 0.69 g g-1, 2,3,7,8-TCDD 2.3 ng kg-1, and generally well below known threshold values for adverse effects on productivity, and the population was increasing. Osprey egg residue data presentedby River Mile (RM) are discussed, e.g., higher PCDDs were generally found immediately downstream of paper mills and eggsfrom the Willamette River had significantly elevated PCBs and PCDDs compared to reference eggs collected nearby in the CascadeMountains. Prey remains at nest sites indicated that the Largescale Sucker (Catostomus macrocheilus) and NorthernPikeminnow (Ptychocheilus oregonensis) accounted for an estimated 90.1% of the biomass in the Osprey diet, and composite samples of these two species were collected from different sampling sites throughout the study area for contaminant analyses. With the large percentage of the fishbiomass in the Osprey diet sampled for contaminants (and fisheaten by Ospreys similar in size to those chemically analyzed),and fish contaminant concentrations weighted by biomass intake, a mean BMF was estimated from fish to Osprey eggs for the largeseries of contaminants. BMFs ranged from no biomagnification(0.42) for 2,3,7,8-TCDF to 174 for OCDD. Our findings for themigratory Osprey were compared to BMFs for the resident HerringGull (Larus argentatus), and differences are discussed. Webelieve a BMF approach provides some basic understanding ofrelationships between contaminant burdens in prey species offish-eating birds and contaminants incorporated into their eggs,and may prove useful in understanding sources of contaminants inmigratory species although additional studies are needed.  相似文献   

18.
The use of underwater optical sensors to monitor pollution and climate change processes has led to the development of robust instruments able to be deployed in lakes and seas for months at a time. However, despite this improvement in their durability they are subject to biofouling on their optical ports resulting in erroneous readings. The use of hydrogel coatings containing the cationic surfactant benzalkonium chloride (BAC) has been shown to prevent the development of biofouling for up to 12 weeks in the marine environment. In this study the use of hydrogel coatings in the freshwater environment was less successful with fouling visible at 2 weeks. In both field and laboratory studies a rapid initial loss of BAC from the hydrogel film was observed. The loss is a combination of diffusive and mass flow but the period from 12 to 50 h appeared to fit to diffusion kinetics and a diffusion coefficient of 7.3 x 10(-8) cm2 s(-1) (13 degrees C) was calculated, an order of 10 times greater than that found in seawater. Subsequently the rate of loss of the residual BAC, for which a diffusion coefficient of 5.7 x 10(-10) cm2 s(-1) (15 degrees C) was measured, was too low to prevent the early stages of biofouling.  相似文献   

19.
Understanding spatial variability of dynamic soil attributes provides information for suitably using land and avoiding environmental degradation. In this paper, we examined five neighboring land use types in Indagi Mountain Pass - Cankiri, Turkey to spatially predict variability of the soil organic carbon (SOC), bulk density (BD), textural composition, and soil reaction (pH) as affected by land use changes. Plantation, recreational land, and cropland were the lands converted from the woodland and grassland which were original lands in the study area. Total of 578 disturbed and undisturbed soil samples were taken with irregular intervals from five sites and represented the depths of 0-10 and 10-20 cm. Soil pH and BD had the lower coefficient of variations (CV) while SOC had the highest value for topsoil. Clay content showed greater CV than silt and sand contents. The geostatistics indicated that the soil properties examined were spatially dependent to the different degrees and interpolations using kriging showed the dynamic relationships between soil properties and land use types. The topsoil spatial distribution of SOC highly reflected the changes in the land use types, and kriging anticipated significant decreases of SOC in the recreational land and cropland. Accordingly, BD varied depending on the land use types, and also, the topsoil spatial distribution of BD differed significantly from that of the subsoil. Generally, BD greatly decreased in places where the SOC was relatively higher except in the grassland where overgrazing was the more important factor than SOC to determine BD. The topsoil spatial distributions of clay, silt, and sand contents were rather similar to those of the subsoil. The cropland and grassland were located on the very fine textured soils whereas the woodland and plantation were on the coarse textured soils. Although it was observed a clear pattern for the spatial distributions of the clay and sand changing with land uses, this was not the case for the silt content, which was attributed to the differences of dynamic erosional processes in the area. The spatial distribution of the soil pH agreed with that of the clay content. Soils of the cropland and grassland with higher amounts of clay characteristically binding more cations and having higher buffering capacities had the greater pH values when compared to the soils of other land uses with higher amounts of sand naturally inclined to be washed from the base cations by the rainwater.  相似文献   

20.
Nowadays, herbicides are applied large ly in India, creating the need to evaluate potential leaching of herbicides. Thus leaching potential of metsulfuron in sandy loam and clay loam soils conditions was evaluated under laboratory conditions with simulated rainfall of 318-mm. Metsulfuron-methyl was applied at 4 and 8 g a.i. ha(-1) on soil columns, respectively. Maximum concentration of metsulfuron was recovered from 0-20 cm depths in both the soils. Results indicated high mobility of metsulfuron under continuous saturated moisture condition that may be significant in terms of ground water contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号