首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
关中清灌区农田生态系统污染现状研究   总被引:10,自引:0,他引:10  
对陕西关中地区清灌区土壤、粮食、地下水及农田退水中的重金属、含氮化合物等污染物进行了分析研究,结果表明:灌区土壤重金属含量在陕西土壤背景值范围内,主要粮食作物尚未受到污染(除F外),但地下水已受到重金属、含氮化合物的污染。同时,灌区农田退水中三氮含量较高,直接排放渭河水体后,影响了渭河水质。另外还发现灌溉能减低土壤F污染。  相似文献   

2.
一、土壤铬污染 含铬工业废水灌溉农田是造成土壤铬污染的最普遍的原因,也是最重要的原因。由于铬在工业上广泛应用,因此工业“三废”中铬是常见的污染物之一。所以,各污水灌区一般都存在土壤铬污染问题。  相似文献   

3.
砷污染土壤微生物修复机制及其研究进展   总被引:5,自引:0,他引:5  
土壤砷污染是一个全球性问题。越来越多的研究表明,自然界中的微生物在砷的迁移转化过程中发挥了重要作用。微生物修复是目前研究的热点,也是治理砷污染土壤的主要手段之一。综述了土壤中砷污染现状及其赋存形式,重点分析讨论了砷污染土壤的微生物修复机制以及提高微生物修复效率的方法。土壤砷污染修复是一项复杂的系统工程,单一的修复技术很难实现显著的效果。只有建立在以微生物修复为主的基础上,辅之以物理化学、植物及农业生态等措施,才能大大提高微生物修复效率。总结了近年来国内外微生物修复砷污染土壤技术的研究进展,以期为深入研究微生物代谢砷的机制及其在砷污染治理中的应用提供参考。  相似文献   

4.
土壤固相吸附砷的研究进展   总被引:3,自引:0,他引:3  
砷是一种常见的有毒元素,土壤砷污染与修复问题已引起世界范围的广泛关注。土壤原位修复是消除土壤砷污染的有效方法,其中砷在土壤固相上的吸附也是近年来的研究热点。土壤固相广泛存在于土壤中,并具有表面积大和表面电荷等理化性质,它可通过与砷酸根阴离子发生表面配位反应,形成内外层配位体等方式来固定土壤中的砷,以降低金属离子的迁移能力和有效性,是一种有效的原位减轻砷污染的方法。文中简单介绍了砷污染的现状、危害和赋存状态,重点介绍了铁铝锰的氧化物和氢氧化物、粘土矿物、有机质等土壤固相对砷的吸附机理及其影响因素,旨在更好地掌握砷的吸附行为。  相似文献   

5.
由于粗放的矿物采冶方式,矿区大量的砷扩散到周边农田中,会导致农田土壤砷污染问题。部分地区的砷背景值高,部分地区在农业生产活动中使用含砷化肥、农药等,均会加剧农田砷污染问题。植物提取修复是一种利用超富集植物将土壤污染物吸收并转移到植物地上部,待植物成熟收割以整体移除污染物的方法。与其他砷污染农田土壤的修复技术相比,植物提取修复技术具有无二次污染的特点。该技术辅以合理的农艺措施,可使土壤砷污染减量,并实现边生产边修复的目标,应用潜力广泛。分析了砷污染土壤植物提取修复技术的原理与现状;重点探讨了近年来强化砷植物提取修复的方法,包括修复植物的种质创新、超富集植物与根际微生物联合作用和农艺措施优化等几个方面;最后展望了农田土壤砷污染修复技术的未来研究方向,以期为该技术的进一步发展提供参考。  相似文献   

6.
金华西湖塘及其灌区砷污染现状研究   总被引:2,自引:0,他引:2  
监测分析了金华西湖塘及其灌区的底泥,土壤和稻谷等样品中的砷的含量,并分析了化学形态分布,讨论了砷在土壤,水稻系统中的迁移转化。  相似文献   

7.
砷污染土壤柠檬酸萃取修复技术研究   总被引:9,自引:0,他引:9  
伴随着砷工业的发展,含砷化学品引发的重大环境污染事故时有发生。一般砷污染事件发生后,土壤是其最直接的受害者,有必要寻找一种快速且行之有效的方法对砷污染土壤进行控制修复。针对此问题,通过实验探讨了柠檬酸萃取修复砷污染土壤的效果,研究了柠檬酸浓度、液土比、萃取时间及土壤共存离子对柠檬酸萃取砷的效果的影响,为砷污染土壤的治理提供依据。结果表明,柠檬酸是一种高效的砷萃取剂;随着柠檬酸浓度、液土比、萃取时间的增加,砷的萃取率均有所升高;当柠檬酸摩尔浓度为0.25 mol/L、液土比为20 mL/g、萃取时间为21 h时,柠檬酸对砷的萃取率达到最高值(70.58%);土壤中共存的PO43-、Zn2+、Fe2+,由于其竞争作用,能使柠檬酸对砷的萃取率降低。  相似文献   

8.
添加硫酸铁降低砷的活性从而抑制其在作物中的富集是阻断砷在食物链中传递的重要手段之一。但是,对于砷和锑伴生的复合污染矿区,添加硫酸铁会对锑产生怎样的影响还不清楚。以贵州晴隆老万场砷和锑复合污染土壤为研究对象,通过对土壤中水溶态砷和水溶态锑以及印度芥菜(Brassica juncea L.)、平坝油菜(Brassica juncea var.PBYC)和凯里青油菜(Brassica juncea var.KLQYC)中砷和锑含量的测定,研究了添加3%(质量分数)硫酸铁对土壤中砷和锑移动性的影响。结果表明,种植在未经硫酸铁处理的土壤中的3种作物根系和地上部分干质量分别为0.07~0.12、2.10~2.40g;种植在经硫酸铁处理的土壤中的3种作物根系和地上部分干质量分别为0.11~0.22、4.10~5.70g。与未经硫酸铁处理的土壤相比,经硫酸铁处理的土壤中水溶态砷浓度降低了82%~84%,且作物体中的砷也显著降低,说明硫酸铁能显著降低土壤中的砷活性,有利于作物的生长。然而,经硫酸铁处理的土壤中水溶态锑浓度却比未经硫酸铁处理的土壤增加37%~56%,导致作物中的锑并不下降。因此,添加硫酸铁对砷和锑复合污染土壤而言,虽能钝化土壤中的砷,但是在一定程度上可能增加锑的活性,需考虑锑活化增加引起的风险。  相似文献   

9.
白银市区土壤作物系统重金属污染分析与防治对策研究   总被引:22,自引:0,他引:22  
通过对白银市区土壤作物系统重金属含量与分布变化特征的调查分析,结果表明,只有东大沟污灌区土壤作物污染严重,Cd,Pb超标明显;西大沟清污混灌区土壤环境为轻度污染,但作物质量符合标准要求;其余灌区土壤物质符合标准要求。最后,根据土壤作物重金属含量分布变化特征,提出了相应的防治对策。  相似文献   

10.
煤基腐殖酸对外源砷胁迫下玉米生长及生理性状的影响   总被引:1,自引:0,他引:1  
为了筛选用于砷污染土壤治理的煤基腐殖酸,采用盆栽实验研究了施用不同种类和浓度的煤基腐殖酸及EDTA对外源砷胁迫下玉米株高、株鲜重、株干重、根干重、砷积累量、叶片抗氧化酶(POD,SOD和CAT)活性和脯氨酸含量的影响。结果表明,11种供试煤基腐殖酸均促进了玉米生长,提高了叶片POD、SOD和CAT活性。其中6和10号腐殖酸可降低土壤砷活性和显著抑制玉米吸收和积累砷,而8和9号腐殖酸增加了土壤活性砷和显著促进了玉米对砷的吸收和累积,且不同程度地强于EDTA。除8和9号外,其余腐殖酸均可明显降低玉米叶片脯氨酸的含量。EDTA可显著促进玉米吸收和积累砷,且加剧了砷对玉米的危害。因此,8和9号供试煤基腐殖酸可以替代EDTA活化土壤砷,与植物配合以提高砷污染土壤的植物修复速度和效果,而6和10号供试煤基腐殖酸则可用于土壤砷钝化剂,以保证作物产品的安全。  相似文献   

11.
The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.  相似文献   

12.
Heavy metal contamination of soil resulting from treated wastewater irrigation can cause serious concerns resulting from consuming contaminated crops. Therefore, it is crucial to assess hazard related to wastewater reuse. In the present investigation, we suggest the use of biomarker approach as a new tool for risk assessment of wastewater reuse in irrigation as an improvement to the conventional detection of physicochemical accumulation in irrigated sites. A field study was conducted at two major sites irrigated with treated wastewater and comparisons were made with a control site. Different soil depths were considered to investigate the extent of heavy metal leaching, the estrogenic activity, and the biomarker response. Results have shown that a longer irrigation period (20 years) caused a slight decrease in soil metal levels when compared to the soil irrigated for 12 years. The highest levels of Cr, Co, Ni, Pb, and Zn were detected at 20 and 40 cm horizons in plots irrigated with wastewater for 12 years. The latter finding could be attributed to chemical leaching to deeper plots for longer irrigation period. Furthermore, the treated wastewater sample showed a high estrogenic activity while none of the soil samples could induce any estrogenic activity. Regarding the stress response, it was observed that the highest stress shown by the HSP47 promoter transfected cells was induced by a longer irrigation period. Finally, the treated wastewater and the irrigated soils exhibited an overexpression of HSP60 in comparison with reference soil following 1 h exposure. In conclusion, in vitro techniques can be efficiently used to assess potential hazard related to wastewater reuse.  相似文献   

13.
The reuse of wastewater for irrigation of agricultural land is a well established practice but introduces many contaminants into the terrestrial environment including pharmaceuticals and personal care products. This study reports the persistence and leaching potential of a group of acidic pharmaceuticals, carbamazepine, and three endocrine disruptors in soils from the Tula Valley in Mexico, one of the largest irrigation districts in the world that uses untreated wastewater. After irrigation of soil columns with fortified wastewater over the equivalent of one crop cycle, between 0% and 7% of the total added amounts of ibuprofen, naproxen, and diclofenac and between 0% and 25% of 4-nonylphenol, triclosan, and bisphenol-A were recovered from the soil profiles. Carbamazepine was more persistent, between 55% and 107% being recovered. Amounts in leachates suggested that movement through the soil was possible for all of the analytes, particularly in profiles of low organic matter and clay content. Analysis of soil samples from the Tula Valley confirmed the general lack of accumulation of the acidic pharmaceuticals (concentrations from below the limit of detection to 0.61 μgkg(-1)) and endocrine disruptors (concentrations from below the limit of detection to 109 μgkg(-1)) despite continual addition through regular irrigation with untreated wastewater; there was little evidence of movement through the soil profiles. In contrast, carbamazepine was present in horizon A of the soil at concentrations equivalent to several years of additions by irrigation (2.6-7.5 μgkg(-1)) and was also present in the deeper horizons. The persistence and mobility of carbamazepine suggested a potential to contaminate groundwater.  相似文献   

14.
Persistence of carbaryl in canal water   总被引:2,自引:0,他引:2  
The presence of the insecticide carbaryl (Sevin) and its decomposition product 1-napthol was confirmed in irrigation and drainage canal water. However, their residues disappeared from the water 6 days after application.  相似文献   

15.
再生水灌溉对土壤中重金属形态及分布的影响   总被引:6,自引:0,他引:6  
通过土柱模拟实验,分析了再生水灌溉对土壤pH、电导率(EC)、有机质、CaCO3水平及4种重金属(Zn、Cd、Cu、As)的形态和分布的影响,探讨了再生水灌溉对土壤中重金属形态稳定性的影响.结果表明,和地下水灌溉(清灌)相比,再生水灌溉(污灌)使表层土中有机质质量分数由0.06%增加到0.32%,pH降低了0.4个单位...  相似文献   

16.
《Chemosphere》2011,82(11):1437-1445
The reuse of wastewater for irrigation of agricultural land is a well established practice but introduces many contaminants into the terrestrial environment including pharmaceuticals and personal care products. This study reports the persistence and leaching potential of a group of acidic pharmaceuticals, carbamazepine, and three endocrine disruptors in soils from the Tula Valley in Mexico, one of the largest irrigation districts in the world that uses untreated wastewater. After irrigation of soil columns with fortified wastewater over the equivalent of one crop cycle, between 0% and 7% of the total added amounts of ibuprofen, naproxen, and diclofenac and between 0% and 25% of 4-nonylphenol, triclosan, and bisphenol-A were recovered from the soil profiles. Carbamazepine was more persistent, between 55% and 107% being recovered. Amounts in leachates suggested that movement through the soil was possible for all of the analytes, particularly in profiles of low organic matter and clay content. Analysis of soil samples from the Tula Valley confirmed the general lack of accumulation of the acidic pharmaceuticals (concentrations from below the limit of detection to 0.61 μg kg−1) and endocrine disruptors (concentrations from below the limit of detection to 109 μg kg−1) despite continual addition through regular irrigation with untreated wastewater; there was little evidence of movement through the soil profiles. In contrast, carbamazepine was present in horizon A of the soil at concentrations equivalent to several years of additions by irrigation (2.6–7.5 μg kg−1) and was also present in the deeper horizons. The persistence and mobility of carbamazepine suggested a potential to contaminate groundwater.  相似文献   

17.
Gross A  Shmueli O  Ronen Z  Raveh E 《Chemosphere》2007,66(5):916-923
The use of greywater for irrigation is becoming increasingly common. However, raw greywater is often contaminated and can cause environmental harm and pose health risks. Nevertheless, it is often used without any significant pretreatment, a practice mistakenly considered safe. The aim of this study was to develop an economically sound, low-tech and easily maintainable treatment system that would allow safe and sustainable use of greywater for landscape irrigation in small communities and households. The system is based on a combination of vertical flow constructed wetland with water recycling and trickling filter, and is termed recycled vertical flow constructed wetland (RVFCW). The RVFCW's properties, removal efficiency, hydraulic parameters and feasibility were studied, as well as the environmental effects of the treated greywater, as reflected by soil and plant parameters over time. The RVFCW was efficient at removing virtually all of the suspended solids and biological oxygen demand, and about 80% of the chemical oxygen demand after 8h. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration after 8h, but this was not always enough to meet current regulations for unlimited irrigation. The treated greywater had no significant negative impact on plants or soil during the study period. The feasibility analysis indicated a return over investment after approximately three years. We concluded that the RVFCW is a sustainable and promising treatment system for greywater use that can be run and maintained by unskilled operators.  相似文献   

18.
This study was designed to provide high-density data on spatial distribution of three herbicides with different physiochemical characteristics in a sludge-amended and non-amended control field over the course of an irrigation season. The field experiment was carried out on a sandy loam Hamra Red Mediterranean soil (Rhodoxeralf) at Bet Dagan, Israel. After a single 50 mm irrigation event, the mean centers of mass (COM) in the control field were at 15.6, 14.9, and 17 cm for bromacil, atrazine and terbuthylazine, respectively; in the sludge-amended field, mean COMs were at 28.8, 31.2, and 34.1 cm, respectively. After 500 mm of irrigation in the control field, the COM depth distribution of the three pesticides was inversely correlated with octanol-water (Kow) distribution coefficients and soil sorption coefficients (Koc), and positively correlated with aqueous solubilities. After 500 mm irrigation in the sludge-amended field, the mean terbuthylazine COM was at 19.8 cm versus 13.8 cm for the control field, demonstrating a sustained enhanced effect on terbuthylazine transport. Downward transport of atrazine was also enhanced by sludge amendment, albeit less than terbuthylazine. Bromacil was preferentially accumulated in the upper soil layers of the sludge-amended field as compared with the control field after 500 mm irrigation. The enhanced transport of all three pesticides in the sludge-amended field after a single irrigation event is attributed to development of preferential flow pathways around hydrophobic clods of sludge. Enhanced transport of terbuthylazine, and to a lesser extent, atrazine, throughout the irrigation season, is attributed to their transport as complexes with dissolved, colloidal and suspended organic matter derived from sludge degradation.  相似文献   

19.
This investigation was under taken to evaluate the groundwater resources contamination due to intensive agricultural practices (particularly greenhouses). The study-area is located in the coastal area of the Ragusa province (South-East Sicily), where numerous existing greenhouses may cause the contamination of groundwater systems (unconfined and confined aquifers) beneath the cropped land. The pollution risk is mainly related with the seepage process of macro-elements nitrogen (N), phosphorus (P), potassium (K), held in the irrigation water and the massive use of fertilizers and pesticides, that may pass through the unsaturated zone of the soil profile. Moreover, the area is characterized by the presence of several wells (about 15 wells/km2) for agricultural use that cause the aquifer overexploitation and the consequent risk of seawater intrusion. The agriculture practices adopted in the study area (irrigation volumes, fertilizer concentrations, use of pesticides…) were monitored since February 2009; moreover, the pollution risk of the aquifers was evaluated through the analysis of groundwater water samples collected (monthly) in the monitoring wells; in particular, nitrogen compounds, soluble phosphorous (PO?2?), potassium, as well as the main pesticides commonly used in the study area, were measured.The results show that electrical conductivity and chloride concentration values can cause reduction of production and leaf damage problems, respectively, for most of the monitored farm systems. The high nitrogen compounds concentrations observed in the monitored wells can cause health and environmental problems. Moreover high pesticide contamination of groundwater was found in two of the five monitored wells.  相似文献   

20.
农业管理实践对除草剂环境行为的影响   总被引:1,自引:0,他引:1  
除草剂的土壤环境行为与受人为控制的农业管理实践有密切的关系。本文通过文献调研综合分析了农田灌溉、耕作制度、施肥、作物秸秆还田和除草剂施用量等农业管理实践对除草剂土壤环境行为的影响 ,并据此提出了减轻除草剂污染地下水的若干思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号