首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High pressure inactivation of hepatitis A virus (HAV) within oysters bioaccumulated under simulated natural conditions to levels >105 PFU/oyster has been evaluated. Five minute treatments at 20°C were administered at 350, 375, and 400 MegaPascals (MPa). Shucked and whole-in-shell oysters were directly compared to determine if there were any differences in inactivation levels. For whole-in-shell oysters and shucked oysters, average values obtained were 2.56 and 2.96 log10 inactivation of HAV, respectively, after a 400-MPa treatment. Results indicate that there is no significant inactivation difference (P = 0.05) between inactivation for whole-in-shell oysters as compared to shucked oysters observed for all pressure treatments. This study indicates that commercial high pressure processing applied to whole-in-shell oysters will be capable of inactivating HAV pathogens.  相似文献   

2.
Naturally occurring plant-derived flavonoids are reported to have antibacterial, antiviral, and pharmacological activities. The objectives of this study were to determine the antiviral effects of four flavonoids (myricetin, l-epicatechin, tangeretin, and naringenin) on the infectivity of food borne norovirus surrogates after 2 h at 37 °C. The lab-culturable surrogates, feline calicivirus (FCV-F9) at titers of ~7 log10 PFU/ml (high titer) or ~5 log10 PFU/ml (low titer) and murine norovirus (MNV-1) at ~5 log10 PFU/ml, were mixed with equal volumes of myricetin, l-epicatechin, tangeretin, or naringenin at concentrations of 0.5 or 1 mM, and incubated for 2 h at 37 °C. Treatments of viruses were neutralized in cell culture medium containing 10 % heat-inactivated fetal bovine serum, serially diluted, and plaque assayed. Each treatment was replicated thrice and assayed in duplicate. FCV-F9 (low titer) was not found to be reduced by tangeretin or naringenin, but was reduced to undetectable levels by myricetin at both concentrations. Low titer FCV-F9 was also decreased by 1.40 log10 PFU/ml with l-epicatechin at 0.5 mM. FCV-F9 at high titers was decreased by 3.17 and 0.72 log10 PFU/ml with myricetin and l-epicatechin at 0.5 mM, and 1.73 log10 PFU/ml with myricetin at 0.25 mM, respectively. However, MNV-1 showed no significant inactivation by the four tested treatments. The antiviral effects of the tested flavonoids are dependent on the virus type, titer, and dose. Further research will focus on understanding the antiviral mechanism of myricetin and l-epicatechin.  相似文献   

3.
Aqueous Hibiscus sabdariffa extracts possess antimicrobial properties with limited information available on their antiviral effects. Aichi virus (AiV) is an emerging foodborne pathogen that causes gastroenteritis. Vaccines are currently unavailable to prevent their disease transmission. The objective of this study was to determine the antiviral effects of aqueous H. sabdariffa extracts against AiV. AiV at ~5 log PFU/ml was incubated with undiluted (200 mg/ml), 1:1 (100 mg/ml) or 1:5 (40 mg/ml) diluted aqueous hibiscus extract (pH 3.6), phosphate-buffered saline (pH 7.2 as control), or malic acid (pH 3.0, acid control) at 37 °C over 24 h. Treatments were stopped by serially diluting in cell-culture media containing fetal bovine serum and titers were determined using plaque assays on confluent Vero cells. Each treatment was replicated thrice and assayed in duplicate. AiV did not show any significant reduction with 1:1 (100 mg/ml) or 1:5 (40 mg/ml) diluted aqueous hibiscus extracts or malic acid after 0.5, 1, or 2 h at 37 °C. However, AiV titers were reduced to non-detectable levels after 24 h with all the three tested concentrations, while malic acid showed only 0.93 log PFU/ml reduction after 24 h. AiV was reduced by 0.5 and 0.9 log PFU/ml with undiluted extracts (200 mg/ml) after 2 and 6 h, respectively. AiV treated with 1:1 (100 mg/ml) and 1:5 (40 mg/ml) diluted extracts showed a minimal ~0.3 log PFU/ml reduction after 6 h. These extracts show promise to reduce AiV titers mainly through alteration of virus structure, though higher concentrations may have improved effects.  相似文献   

4.
The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation–sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.  相似文献   

5.
Cinnamaldehyde (CNMA), an organic compound that gives cinnamon its flavor and odor, was investigated for its virucidal activity on norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), and hepatitis A virus (HAV). Initially, different concentrations of CNMA (0.1, 0.5 and 1 %) were individually mixed with each virus at titers of ca. 6–7 log10 TCID50/ml and incubated 2 h at 4 and 37 °C. CNMA was effective in reducing the titers of norovirus surrogates in a dose-dependent manner after 2 h at 37 °C, while HAV titers were reduced by 1 log10 after treatment with 1 % of CNMA. When incubation time was extended, HAV titers were reduced by 3.4 and 2.7 log10 after overnight incubation at 37 °C with 1 and 0.5 % of CNMA, respectively. Moreover, this paper analyzed, for the first time, the antiviral activity of adding an active electrospun interlayer based on zein and CNMA to a polyhydroxybutyrate packaging material (PHB) in a multilayer form. Biodegradable multilayer systems prepared with 2.60 mg/cm2 (~9.7 %) of CNMA completely inactivated FCV according to ISO 22196:2011, while MNV titers were reduced by 2.75 log10. When the developed multilayer films were evaluated after one month of preparation or at 25 °C, the antiviral activity was reduced as compared to freshly prepared multilayer films evaluated at 37 °C. The results show the excellent potential of this system for food contact applications as well as for active packaging technologies in order to maintain or extend food quality and safety.  相似文献   

6.

Raw oysters are considered a culinary delicacy but are frequently the culprit in food-borne norovirus (NoV) infections. As commercial depuration procedures are currently unable to efficiently eliminate NoV from oysters, an optimisation of the process should be considered. This study addresses the ability of elevated water temperatures to enhance the elimination of NoV and Tulane virus (TuV) from Pacific oysters (Crassostrea gigas). Both viruses were experimentally bioaccumulated in oysters, which were thereafter depurated at 12 °C and 17 °C for 4 weeks. Infectious TuV and viral RNA were monitored weekly for 28 days by TCID50 and (PMAxx-) RT-qPCR, respectively. TuV RNA was more persistent than NoV and decreased by?<?0.5 log10 after 14 days, while NoV reductions were already?>?1.0 log10 at this time. For RT-qPCR there was no detectable benefit of elevated water temperatures or PMAxx for either virus (p?>?0.05). TuV TCID50 decreased steadily, and reductions were significantly different between the two temperatures (p?<?0.001). This was most evident on days 14 and 21 when reductions at 17 °C were 1.3–1.7 log10 higher than at 12 °C. After 3 weeks, reductions?>?3.0 log10 were observed at 17 °C, while at 12 °C reductions did not exceed 1.9 log10. The length of depuration also had an influence on virus numbers. TuV reductions increased from?<?1.0 log10 after seven days to?>?4.0 log10 after 4 weeks. This implies that an extension of the depuration period to more than seven days, possibly in combination with elevated water temperatures, may be beneficial for the inactivation and removal of viral pathogens.

  相似文献   

7.
Surface disinfection, as part of environmental hygiene practices, is an efficient barrier to gastroenteritis transmission. However, surface disinfectants may be difficult to obtain in remote, resource-limited, or disaster relief settings. Electrochemical oxidants (ECO) are chlorine-based disinfectants that can be generated using battery power to electrolyze brine (NaCl) solutions. Electrolysis generates a mixed-oxidant solution that contains both chlorine (HOCl, OCl?) and reactive oxygen species (e.g., ·OH, O3, H2O2, and ·O2?) capable of inactivating pathogens. One onsite generator of ECO is the Smart Electrochlorinator 200 (SE-200, Cascade Designs, Inc.). In a laboratory study, we assessed ECO surface disinfection efficacy for two gastrointestinal virus surrogates: bacteriophage MS2 and murine norovirus MNV-1. We quantified both infectivity and nucleic acid inactivation using culture-dependent and independent assays. At free available chlorine concentrations of 2,500 ppm and a contact time of 30 s, ECO inactivation of infective MS2 bacteriophage exceeded 7 log10 compared to MNV-1 disinfection of approximately 2 log10. Genomic RNA inactivation was less than infective virus inactivation: MS2 RNA inactivation was approximately 5 log10 compared to MNV-1 RNA inactivation of approximately 1.5 log10. The results are similar to inactivation efficacy of household bleach when used at similar free available chlorine concentrations. Our work demonstrates the potential of ECO solutions, generated onsite, to be used for surface disinfection.  相似文献   

8.
In addition to enteric viruses of fecal origin, emerging zoonotic viruses such as respiratory coronaviruses and influenza viruses may potentially be transmitted via contaminated foods. The goal of this study was to determine the recovery efficiencies and the survival of two respiratory viruses, namely, adenovirus 2 (Ad2) and coronavirus 229E (CoV229E), on fresh produce in comparison to the enteric poliovirus 1 (PV1). Adenovirus was recovered with efficiencies of 56.5, 31.8, and 34.8 % from lettuce, strawberries, and raspberries, respectively. Coronavirus was recovered from lettuce with an efficiency of 19.6 % yet could not be recovered from strawberries. Poliovirus was recovered with efficiencies of 76.7 % from lettuce, but only 0.06 % from strawberries. For comparison purposes, the survival of Ad2, CoV229E, and PV1 was determined for periods up to 10 days on produce. The enteric PV1 survived better than both respiratory viruses on lettuce and strawberries, with only ≤1.03 log10 reductions after 10 days of storage at 4 °C compared to CoV229E not being recovered after 4 days on lettuce and reductions of 1.97 log10 and 2.38 log10 of Ad2 on lettuce and strawberries, respectively, after 10 days. Nevertheless, these respiratory viruses were able to survive for at least several days on produce. There is therefore the potential for transfer to the hands and subsequently to the mucosa via rubbing the eyes or nose. In addition, some respiratory coronaviruses (e.g., severe acute respiratory syndrome coronavirus) and adenoviruses are also capable of replication in the gut and there is thus some potential for acquisition through the consumption of contaminated produce.  相似文献   

9.
Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ?X174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log10. LA treatment at 2.2 M gave log10 reductions in the viral spectrum of 0.29–2.1 for swine liver and 0.87–3.1 for ham, with ?X174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log10 reductions of 1.6–2.8 for swine liver, 0.97–2.2 for ham and 1.3–2.3 for sausage, at 15–60 J cm?2, with MS2 as the most stable microorganism. The HPP treatment gave significantly (p < 0.05) greater virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p < 0.05) greater than on ham for all microorganisms. The results presented here could be used in assessments of different strategies to protect consumers against virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.  相似文献   

10.
The potential of high pressure processing to inactivate hepatitis A virus (HAV) within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contaminated seawater. After shucking, 5 min pressure treatments of 300, 325, 350, 375, and 400 MegaPascals (MPa) were performed at room temperature (18–22°C). For blue mussels, log10 PFU reductions of HAV averaged 2.1 and 3.6 for treatments of 350 and 400 MPa, while for Mediterranean mussels reductions of 1.7 and 2.9 log10 PFU MPa were observed for equivalent treatments. These results demonstrate that high pressure processing is capable of inactivating HAV within mussels.  相似文献   

11.
This study evaluates and compares the effectiveness of solar photo–Fenton systems for the inactivation of hepatitis A virus (HAV) in water. The effect of solar irradiance, dark- Fenton reaction and three different reactant concentrations (2.5/5, 5/10 and 10/20 mg/L of Fe2+/H2O2) on the photo–Fenton process were tested in glass bottle reactors (200 mL) during 6 h under natural sunlight. Disinfection kinetics were determined both by RT-qPCR and infectivity assays. Mean water temperatures ranged from 25 to 27.3 °C, with a maximum local noon UV irradiances of 22.36 W/m2. Photo–Fenton systems yielded increased viral reduction rates in comparison with the isolated effect under the Fenton reaction in darkness (negligible viral reduction) or the solar radiation (0.25 Log of RNA reduction). With the highest concentration employed (10–20 mg/L Fe2+–H2O2), an average RNA reduction rate of ~ 1.8 Log (initial concentration of 105 pfu/mL) and a reduction of 80% in the infectivity capacity were reached. Results showed a strong synergistic effect between Fe2+/H2O2 and sunlight, demonstrating that significant disinfection rates of HAV under photo–Fenton systems may occur with relatively higher efficiency at middle environmental temperatures and without the need for an energy-intensive light source.  相似文献   

12.
Environmental Effectors on the Inactivation of Human Adenoviruses in Water   总被引:1,自引:0,他引:1  
Environmental factors are highly relevant to the global dissemination of viral pathogens. However, the specific contribution of major effectors such as temperature and sunlight on the inactivation of waterborne viruses is not well characterized. In this study, the effect of temperature (7, 20, and 37 °C), UVB and UVA radiation on viral inactivation was evaluated in phosphate buffered saline (PBS), mineral water, wastewater, 1,000-fold diluted wastewater and seawater. The stability of human adenoviruses infectivity, known as human pathogens and indicators of fecal contamination, was monitored during 24 h, both in the dark and exposed to UV radiation by immunofluorescence assays. In the dark, no Human adenovirus (HAdV) inactivation was observed in PBS and mineral water at any of the temperatures studied, whereas at 37 °C in reactors with higher microbial concentration (wastewater, diluted wastewater, and seawater), decays between 2.5 and 5 log were recorded. UVB radiation showed a dramatic effect on HAdV inactivation and 6-log were achieved in all reactors by the end of the experiments. The effect of UVA showed to be dependent on the water matrix analyzed. At 20 °C, HAdV showed a 2-log decay in all reactors radiation while at 37 °C, results in wastewater, diluted wastewater, and seawater reactors were equivalent to those observed in the dark. These results suggest UVB radiation as the major environmental factor challenging viral inactivation, followed by biotic activity indirectly associated to higher temperatures and finally, by UVA radiation.  相似文献   

13.
The human noroviruses (NoV) are the major cause of acute non-bacterial gastroenteritis and are commonly transmitted by foodborne routes. Epidemiological evidence from propagated outbreaks, as well as environmental sampling, suggest that these viruses are environmentally stable. The purpose of this study was to examine the persistence of representative human NoV on the fingertips of volunteers and on commonly used food preparation surfaces. Human fingerpads and surfaces (stainless steel, Formica®, and ceramic) were inoculated with 20% fecal suspensions of Norwalk virus (NV) or Snow Mountain virus (SMV). The virus inocula were recovered by elution at serial time points ranging from 0 to 120 min post-inoculation (for fingerpads) and after up to 42 days (for surfaces). The quantity of detectable viral RNA, expressed as genome equivalent particles (GEP) was evaluated using quantitative real-time RT-PCR (RT-qPCR). The amount of NV RNA on the surface decreased gradually over time, with an average reduction ranging from 1.5 to 2.9 log10 GEP after 21–28 days storage under ambient conditions. SMV showed greater environmental persistence, with a 0.4–1.2 log10 GEP reduction on all three surfaces after 42 days of ambient storage. On fingerpads, the amount of human NoV RNA declined slightly (<0.25 log10) after 15 min and remained relatively unchanged thereafter (through 120 min). These results support the epidemiological evidence that food preparation surfaces and human hands can act as vehicles for human NoV transmission long after the initial contamination event has occurred.  相似文献   

14.
15.
The effect of shallow aeration on odours from anaerobic lagoons treating piggery wastes was determined in the laboratory under conditions of approximately constant temperature (20°C). The loading rate to the simulated lagoon profiles was approximately 50 g BOD5 m?3 day?1 and the average retention time was 128 days. The removal of organic pollutants and bacteria in this system has been discussed elsewhere.Shallow surface aeration to depths ranging from 8 to 40 cm reduced odours from piggery waste treatments. Chemical and organoleptic estimates consistently indicated that odour levels from all aerated treatments were similar and markedly better than those from the unaerated treatment.The average volatile sulphides levels in the aerated treatments were less than 5% of the levels found in the space above the unaerated treatment. The levels in the aerated treatments of less than 0.07 ppm were below the odour threshold limit of 0.1 ppm compared with 1.45 ppm in the unaerated column. Odour threshold dilution (OTD), and more particularly odour offensiveness, were also reduced by shallow surface aeration. The mean OTD values (log10) of all lagoon treatments (unaerated 2.9 and <2.6 for aerated treatments) were less than that of the untreated waste (3.3) or from wastes stored anaerobically in underslat pits (4.2). Once perceived however, the offensiveness rating of odours from the unaerated treatment was greater (9.4) than from the aerated systems (<1.7).Volatile fatty acid (VFA) levels in the effluents from all treatments were negligible (< 0.01 g l?1).Total VFA levels in the untreated waste were 2.1 g l?1, of which approximately 57, 20 and 11% were acetic, propionic and n-butyric, respectively. Sludge VFA levels were about 0.2 g l?1, of which 75% was acetic acid.  相似文献   

16.
There are fears that global warming will lead to degradation of peatlands, higher emissions of greenhouse gases from peat, and accelerated warming. Anaerobic decomposition of organic soils produces methane (CH4), a potent greenhouse gas. Two peat bogs differing in mean annual temperature, Velke Darko (VD, Czech Republic, 7.2 °C), and Stor Åmyran (SA, Sweden, 4.0 °C), were selected for a comparative study of how organic soils in different climatic zones will respond to warmer and drier conditions. Twenty peat cores from each bog were incubated in growth chambers. Under present-day summer conditions, VD produced 14 times more CH4 than SA. Two different warming scenarios were used. Peat-core replicates were kept at temperatures of 11 versus 16 °C, and 11 versus 22 °C. From 11 to 16 °C, the CH4 production slightly decreased at SA, and slightly increased at VD. From 11 to 22 °C, the CH4 production increased 9 times at SA, but slightly decreased at VD. After an 8-month incubation, peat cores under drying conditions (water table at ?14 cm) were compared to samples with original water table (?2 cm). Drying conditions led to a steeper reduction in CH4 production at VD, compared to SA. The CH4 production decreased more than 100 times at VD. Then, the combined effect of simultaneous warming and drying at 11 and 22 °C was studied. We did not find any significant effect of interactions between increasing temperature and decreasing water table level. Overall, the warmer site VD responded more strongly to the simulated climate change than the colder site SA.  相似文献   

17.
Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70 % ethanol or 0.5 % levulinic acid (LV) plus 0.01 or 0.1 % sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70 % EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5 %) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5 % LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method.  相似文献   

18.
Anaerobic lagoon profile studies were undertaken in perspex columns which were either unaerated (A), or aerated to a depth of 8 (B), 20 (C) or 40 cm (D). The dissolved oxygen level in the aerated columns was maintained at approximately 70% of saturation and all columns were loaded at the rate of 50–55 g BOD5 m?3 day?1. Temperature was maintained at about 20°C and the retention time averaged 128 days. The untreated waste had total solids (TS) and 5-day biochemical oxygen demand (BOD5) levels of 26.4 and 6.0 g l?1, respectively. The average volatility of the TS was 79.0%.The results of the study indicated that all treatments removed at least 77 and 90% of the incoming TS and BOD5, respectively. The treatment efficiencies of the unaerated and shallow aerated systems (8 and 20 cm) were similar and higher than treatment D. Oxygen uptake rates (mg O2 l?1 h?1) in treatments B, C and D were 16.8, 7.8 and 11.4, respectively. Nitrate-nitrogen levels in aerated treatments were <23 mg l?1. Faecal coliform (FC) and faecal streptococci (FS) levels in the effluents were less than the influent levels which were approximately 1.5 × 106 ml?1 for FC and 1.7 × 106 ml?1 for FS. The average percentage reductions, which were least for treatment D, were greater than 99% for FC and greater than 96% for FS. The absolute numbers, however, remained high in all treatments.  相似文献   

19.
The capability of a cost-effective and a small size decentralized pilot wastewater treatment plant (WWTP) to remove enteric viruses such as rotavirus, norovirus genogroup I (GGI), norovirus genogroup II (GGII), Hepatitis E virus (HEV), and adenovirus was studied. This pilot plant is an integrated hybrid anaerobic/aerobic setup which consisted of anaerobic sludge blanket (UASB), biological aerated filter (BAF), and inclined plate settler (IPS). Both the UASB and BAF are packed with a non-woven polyester fabric (NWPF). Results indicated that the overall log10 reductions of enteric viruses’ genome copies through the whole system were 3.1 ± 1, 3.3 ± 0.5, and 2.6 ± 0.9 log10 for rotavirus, norovirus GGI, and adenovirus, respectively. Reduction efficiency for both norovirus GGII and HEV after the different treatment steps could not be calculated because there were no significant numbers of positive samples for both viruses. The overall reduction of rotavirus infectious units through the whole system was 2.2 ± 0.8 log10 reduction which is very close to the overall log10 reduction of adenovirus infectious units through the whole system which was 2.1 ± 0.8 log10 reduction. There was no considerable difference in the removal efficiency for different rotavirus G and P types. Adenovirus 41 was the only type detected in the all positive samples. Although the pilot WWTP investigated is cost effective, has a small footprint, does not need a long distance network pipes, and easy to operate, its efficiency to remove enteric viruses is comparable with the conventional centralized WWTPs.  相似文献   

20.
Since the solubilization of meat and bone meal (MBM) is a prerequisite in many MBM disposal approaches, enhancement of the solubilization by means of thermochemical pretreatment was investigated in this study at two temperatures (55°C and 131°C) and six sodium hydroxide (NaOH) concentrations (0, 1.25, 2.5, 5, 10 and 20 g/L). The MBM volatile solid (VS) reduction ratio was up to 66% and 70% at 55°C and 131°C, respectively. At the same temperature, the VS reduction ratio increased with the increase in the dosage of NaOH. The study on the methane (CH4) production potential of pretreated MBM shows that the addition of NaOH at 55°C did not cause the inhibition of the succeeding CH4 production process. However, CH4 production was inhibited by the addition of NaOH at 131°C. The CH4 production potential was in the range of 389 to 503 mL CH4/g VS MBM and 464 to 555 mL CH4/g VS MBM at 55°C and 131°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号