首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: This study compared biomechanical responses of a normally seated Hybrid III dummy on conventional and all belts to seat (ABTS) seats in 40.2 km/h (25 mph) rear sled tests. It determined the difference in performance with modern (≥2000 MY) seats compared to older (<2000 MY) seats and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position. The testing included 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS seats. The dummy was fully instrumented, including head accelerations, upper and lower neck 6-axis load cells, chest acceleration, thoracic and lumbar spine load cells, and pelvis accelerations. The peak responses were normalized by injury assessment reference values (IARVs) to assess injury risks. Statistical analysis was conducted using Student's t test. High-speed video documented occupant kinematics.

Results: Biomechanical responses were lower with modern (≥2000 MY) seats than older (<2000 MY) designs. The lower neck extension moment was 32.5 ± 9.7% of IARV in modern seats compared to 62.8 ± 31.6% in older seats (P =.01). Overall, there was a 34% reduction in the comparable biomechanical responses with modern seats. Biomechanical responses were lower with modern seats than ABTS seats. The lower neck extension moment was 41.4 ± 7.8% with all MY ABTS seats compared to 32.5 ± 9.7% in modern seats (P =.07). Overall, the ABTS seats had 13% higher biomechanical responses than the modern seats.

Conclusions: Modern (≥2000 MY) design seats have lower biomechanical responses in 40.2 km/h rear sled tests than older (<2000 MY) designs and ABTS designs. The improved performance is consistent with an increase in seat strength combined with improved occupant kinematics through pocketing of the occupant into the seatback, higher and more forward head restraint, and other design changes. The methods and data presented here provide a basis for standardized testing of seats. However, a complete understanding of seat safety requires consideration of out-of-position (OOP) occupants in high-speed impacts and consideration of the much more common, low-speed rear impacts.  相似文献   


2.
Objective: Recent field data analyses have shown that the safety advantages of rear seats relative to the front seats have decreased in newer vehicles. Separately, the risks of certain injuries have been found to be higher for obese occupants. The objective of this study is to investigate the effects of advanced belt features on the protection of rear-seat occupants with a range of body mass index (BMI) in frontal crashes.

Methods: Whole-body finite element human models with 4 BMI levels (25, 30, 35, and 40 kg/m2) developed previously were used in this study. A total of 52 frontal crash simulations were conducted, including 4 simulations with a standard rear-seat, 3-point belt and 48 simulations with advanced belt features. The parameters varied in the simulations included BMI, load limit, anchor pretensioner, and lap belt routing relative to the pelvis. The injury measurements analyzed in this study included head and hip excursions, normalized chest deflection, and torso angle (defined as the angle between the hip–shoulder line and the vertical direction). Analyses of covariance were used to test the significance (P <.05) of the results.

Results: Higher BMI was associated with greater head and hip excursions and larger normalized chest deflection. Higher belt routing increased the hip excursion and torso angle, which indicates a higher submarining risk, whereas the anchor pretensioner reduced hip excursion and torso angle. Lower load limits decreased the normalized chest deflection but increased the head excursion. Normalized chest deflection had a positive correlation with maximum torso angle. Occupants with higher BMI have to use higher load limits to reach head excursions similar to those in lower BMI occupants.

Discussion and Conclusion: The simulation results suggest that optimizing load limiter and adding pretensioner(s) can reduce injury risks associated with obesity, but conflicting effects on head and chest injuries were observed. This study demonstrated the feasibility and importance of using human models to investigate protection for occupants with various BMI levels. A seat belt system capable of adapting to occupant size and body shape will improve protection for obese occupants in rear seats.  相似文献   

3.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   

4.
为满足目前公共场所安全容量定额管理需求,提出了基于风险分析的公共场所人员安全容量确定方法,具体分析了该方法的实现流程。首先从影响公共场所人员容量的风险源出发,分析活动类型、场所类型、参加人员和灾害事故这4个方面的人群风险源影响,而后从运动阈值、心理阈值、心理阈值和服务资源阈值4个承受力角度重点阐述了运动安全容量、生理安全容量、生理安全容量和服务安全容量。通过风险分析方法得到的安全容量,考虑了公共场所的风险特点,并且这个安全容量将随着风险因素的变化而不同。这个方法可用于指导公共场所人员安全容量定额管理。  相似文献   

5.
Objective: Active safety devices such as automatic emergency brake (AEB) and precrash seat belt have the potential to accomplish further reduction in the number of the fatalities due to automotive accidents. However, their effectiveness should be investigated by more accurate estimations of their interaction with human bodies. Computational human body models are suitable for investigation, especially considering muscular tone effects on occupant motions and injury outcomes. However, the conventional modeling approaches such as multibody models and detailed finite element (FE) models have advantages and disadvantages in computational costs and injury predictions considering muscular tone effects. The objective of this study is to develop and validate a human body FE model with whole body muscles, which can be used for the detailed investigation of interaction between human bodies and vehicular structures including some safety devices precrash and during a crash with relatively low computational costs.

Methods: In this study, we developed a human body FE model called THUMS (Total HUman Model for Safety) with a body size of 50th percentile adult male (AM50) and a sitting posture. The model has anatomical structures of bones, ligaments, muscles, brain, and internal organs. The total number of elements is 281,260, which would realize relatively low computational costs. Deformable material models were assigned to all body parts. The muscle–tendon complexes were modeled by truss elements with Hill-type muscle material and seat belt elements with tension-only material. The THUMS was validated against 35 series of cadaver or volunteer test data on frontal, lateral, and rear impacts. Model validations for 15 series of cadaver test data associated with frontal impacts are presented in this article. The THUMS with a vehicle sled model was applied to investigate effects of muscle activations on occupant kinematics and injury outcomes in specific frontal impact situations with AEB.

Results and Conclusions: In the validations using 5 series of cadaver test data, force–time curves predicted by the THUMS were quantitatively evaluated using correlation and analysis (CORA), which showed good or acceptable agreement with cadaver test data in most cases. The investigation of muscular effects showed that muscle activation levels and timing had significant effects on occupant kinematics and injury outcomes. Although further studies on accident injury reconstruction are needed, the THUMS has the potential for predictions of occupant kinematics and injury outcomes considering muscular tone effects with relatively low computational costs.  相似文献   

6.
Objective: In minicars, the survival space between the side structure and occupant is smaller than in conventional cars. This is an issue in side collisions. Therefore, in this article a solution is studied in which a lateral seat movement is imposed in the precrash phase. It generates a pre-acceleration and an initial velocity of the occupant, thus reducing the loads due to the side impact.

Methods: The assessment of the potential is done by numerical simulations and a full-vehicle crash test. The optimal parameters of the restraint system including the precrash movement, time-to-fire of head and side airbag, etc., are found using metamodel-based optimization methods by minimizing occupant loads according to European New Car Assessment Programme (Euro NCAP).

Results: The metamodel-based optimization approach is able to tune the restraint system parameters. The numerical simulations show a significant averaged reduction of 22.3% in occupant loads.

Conclusion: The results show that the lateral precrash occupant movement offers better occupant protection in side collisions.  相似文献   

7.
基于Kikuji Togawa所提出的常用人员疏散行动时间经验公式,使用拉丁超立方抽样法,研究房间人员密度和出口宽度的不确定性对疏散行动时间的影响。得出二者服从均匀分布和正态分布条件下,疏散行动时间的概率密度直方图和累积概率曲线。结果表明,人员密度和出口宽度的不同分布形式对疏散行动时间都有显著影响,二者服从正态分布时,计算得到的疏散行动时间范围比服从均匀分布小,且较为集中。而服从均匀分布时,计算得到的疏散行动时间在其范围内则较为均匀、分散。在小概率0~0.1区间范围内,人员密度和出口宽度服从正态分布时,计算得到的疏散行动时间累计概率值明显较均匀分布小,说明二者服从正态分布得到的疏散行动时间值偏于保守。二者均为不确定参数时,假定人员密度服从均匀分布,出口宽度服从正态分布时计算得出的疏散行动时间值偏于保守。  相似文献   

8.
Airbags are expected to reduce vehicle occupant injuries, primarily by preventing head and chest contacts with the steering wheel and instrument panel. To date, however, there has been little evidence of airbag effectiveness in terms of field accident investigations. This paper presents some preliminary results from an ongoing case-control study of crashed vehicles equipped with Australian airbag technology (supplementary airbags in combination with seatbelt webbing clamps). Vehicles were inspected and occupants interviewed according to the National Accident Sampling System (NASS). Data were available for 140 belted drivers involved in frontal crashes (delta-V between 21 and 60 km/h), including 71 airbag and 69 control cases. Analyses revealed significant reductions in the cost of injury and a strong indication of a redaction in overall injury severity among the airbag cases. Indications of airbag benefits were also found in terms of a redaction in the probability of sustaining a moderate and severe injury. Some evidence was found for an increase in minor injuries among the airbag cases. As expected, airbag technology seems to be reducing head, face and chest injuries, particularly those of at least a moderate severity. These results are compared with recent overseas findings.  相似文献   

9.
Objective: Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety—including differences in compartment geometry and occupant clothing and gear—that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes.

Methods: In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test.

Results: Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear.

Conclusions: ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.  相似文献   


10.

Problem

Side impacts are a serious automotive injury problem; they represent about 30% of all fatalities for passenger vehicle occupants. This literature review focuses on occupant injuries resulting from real lateral collisions. It emphasizes the interaction between injury patterns and crash factors, taking into account type of injuries and their severity. It highlights what is known on the subject and suggests further studies.

Method

We reviewed papers identified by searches in two electronic databases for the 1996-2009 publication period, and in specific journals and conference proceedings.

Results

Studies on the Primary Direction of Force (PDOF) have revealed that fatal crashes occur most frequently when the PDOF is at 3 or 9 o'clock. The risk of serious injury is two to three times higher for the near-side occupant than for the far-side occupant. Head injuries predominate in oblique impacts and thoracic injuries in perpendicular ones. A few results are also reported on side airbag protection.

Conclusions

This literature review presents an overall picture of the injuries caused by lateral collisions, though each of the papers or articles examined focuses mostly on some particular aspect of the problem. The incidence of specific injuries depends on the data source used. Very few population-based analyses of lateral collision injuries were found.

Impact on industry

New studies are needed to evaluate new protective devices (e.g., lateral airbags, inflatable curtains). Without interfering with their care duties, Emergency Medical Technicians could be systematically trained to observe the collision's specific characteristics and to report all their relevant observations to the emergency physicians to increase the likelihood of prompt diagnosis and proper care.  相似文献   

11.
This study analyzes 46 brain and 48 spinal-cord impact experiments. The velocity of brain impact was 2.0-10.0 m/s and displacement, 0.75-5.0 mm (5.3-33% compression) using a controlled pneumatic impact. The velocity of spinal-cord impact was 1.5-6.0 m/s and displacement, 1.25-3.25 mm (25-65% compression). Brain injury varied from cortical contusion, diffuse axonal injury (DAI), to fatalities, and spinal-cord injury from temporary to complete loss of somatosensory-evoked potentials. Logist functions were determined for each injury severity and various biomechanical parameters, VC, C, V, and combinations. Brain and spinal-cord injury is most strongly correlated to VC, the viscous response. The goodness-of-fit was x2 = 22.1, R-0.84 and p< 0.0000 for fatal brain injury, x2 = 27.5, R = 0.96 and p< 0.0000 for cortical contusion, and x2 = 17.7, R = 0.49 and p < 0.0001 for partial recovery of spinal-cord conduction. Neural tissue is viscoelastic, with a rate-dependent tolerance related to energy absorption. VC is a measure of energy absorption by impact deformation and is predictive of neural contusion, DAI, long-duration coma, spinal-cord dysfunction, and death. Tolerances for various severities of neural injury are presented. At the tissue level, VC is the product of strain and strain-rate, ε dε/dt. The research shows that strain is not a sufficient parameter of neural injury risk, and that the product of strain and strain-rate is a key biomechanical parameter for brain and spinal-cord injury.  相似文献   

12.
The objective of the present study was to develop three separate age-specific one, three, and six year old pediatric human cervical spine (C4-CS-C6) three-dimensional nonlinear finite element models and to quantify the biomechanical responses. The adult model was modified to create one, three, and six year old pediatric spines by incorporating the local geometrical and material characteristics of the developmental anatomy. The adult human cervical spine model was constructed from close-up computed tomography sections and sequential anatomic cryomicrotome sections, and validated with experimental data. The biomechanical responses were compared with the adult human cervical spine behavior under different loading modes using three approaches. Approach 1: using pure overall structural scaling (reduce size) of the adult model. Approach 2: using three separate age-specific pediatric models incorporating local component geometrical and material property changes. Approach 3: applying the overall structural scaling to the above three pediatric models. All pediatric structures were consistently more flexible than the adult spine under all loading modes. However, responses obtained using the pure overall structural scaling (Approach 1) increased the flexibilities slightly. In contrast, the inclusion of local component geometrical and material property changes to create the three individual pediatric cervical spine models (Approach 2) produced significantly higher changes in the flexibilities under all loading modes. When overall structural scaling effects were added to the three pediatric models (Approach 3), the increase was not considerably higher. White the one year old pediatric model was the most flexible followed by the three and six year old models in flexion and extension, the three year old pediatric model was the most flexible under compression followed by the six and one year old models. The differing biomechanical responses among different pediatric groups were ascribed to the individual developmental anatomical features. The present findings of significant increase in biomechanical response due to local geometry and material property changes emphasize the need to consider the developmental anatomical features in the pediatric structures to better predict their biomechanical behavior.  相似文献   

13.
INTRODUCTION: To examine the association between child passenger injury risk, restraint use, and crash time (day vs. night) for children in crashes of vehicles driven by teenage versus adult drivers. METHODS: Cross-sectional study involving telephone interviews with insured drivers in a probability sample of 6,184 crashes involving 10,028 children. RESULTS: Child passengers in teen nighttime crashes had an increased injury risk and an increased risk of restraint nonuse compared with those in teen daytime crashes. This increased injury risk can be explained by differences in the age of child passengers, collision type, and child passenger's restraint status associated with time of day. CONCLUSIONS: In order to limit the risk of injury to child passengers driven by teens, Graduated Driver Licensing (GDL) laws should include provisions restricting nighttime driving, as well as mandates for age-appropriate restraint for child passengers. Consideration should also be given for education in child passenger safety for novice teen drivers as part of the licensing process. IMPACT ON INDUSTRY: Results of this study can be used to support advocacy efforts by the automotive industry and others to promote nighttime driving restrictions on novice drivers. In addition, given that both driver groups were more likely to be involved in a single-vehicle collision during the night, technologies such as electronic stability control may offer opportunities for protection. Further reseach on specific circumstances of teen nighttime crashes is needed to inform industry efforts to improve visibility or vehicle operation under poor lighting conditions.  相似文献   

14.
Objective: This study evaluated the effectiveness of a series of 1-year multifaceted school-based programs aimed at increasing booster seat use among urban children 4–7 years of age in economically disadvantaged areas.

Methods: During 4 consecutive school years, 2011–2015, the Give Kids a Boost (GKB) program was implemented in a total of 8 schools with similar demographics in Dallas County. Observational surveys were conducted at project schools before project implementation (P0), 1–4 weeks after the completion of project implementation (P1), and 4–5 months later (P2). Changes in booster seat use for the 3 time periods were compared for the 8 project and 14 comparison schools that received no intervention using a nonrandomized trial process.

The intervention included (1) train-the-trainer sessions with teachers and parents; (2) presentations about booster seat safety; (3) tailored communication to parents; (4) distribution of fact sheets/resources; (5) walk-around education; and (6) booster seat inspections.

The association between the GKB intervention and proper booster seat use was determined initially using univariate analysis. The association was also estimated using a generalized linear mixed model predicting a binomial outcome (booster seat use) for those aged 4 to 7 years, adjusted for child-level variables (age, sex, race/ethnicity) and car-level variables (vehicle type). The model incorporated the effects of clustering by site and by collection date to account for the possibility of repeated sampling.

Results: In the 8 project schools, booster seat use for children 4–7 years of age increased an average of 20.9 percentage points between P0 and P1 (P0 = 4.8%, P1 = 25.7%; odds ratio [OR] = 6.9; 95% confidence interval [CI], 5.5, 8.7; P < .001) and remained at that level in the P2 time period (P2 = 25.7%; P < .001, for P0 vs. P2) in the univariate analysis. The 14 comparison schools had minimal change in booster seat use. The multivariable model showed that children at the project schools were significantly more likely to be properly restrained in a booster seat after the intervention (OR = 2.7; 95% CI, 2.2, 3.3) compared to the P0 time period and compared to the comparison schools.

Conclusion: Despite study limitations, the GKB program was positively associated with an increase in proper booster seat use for children 4–7 years of age in school settings among diverse populations in economically disadvantaged areas. These increases persisted into the following school year in a majority of the project schools. The GKB model may be a replicable strategy to increase booster seat use among school-age children in similar urban settings.  相似文献   


15.
Objective: Thoracic side airbags (tSABs) were integrated into the vehicle fleet to attenuate and distribute forces on the occupant's chest and abdomen, dissipate the impact energy, and move the occupant away from the intruding structure, all of which reduce the risk of injury. This research piece investigates and evaluates the safety performance of the airbag unit by cross-correlating data from a controlled collision environment with field data.

Method: We focus exclusively on vehicle–vehicle lateral impacts from the NHTSA's Vehicle Crash Test Database and NASS-CDS database, which are replicated in the controlled environment by the (crabbed) barrier impact. Similar collisions with and without seat-embedded tSABs are matched to each other and the injury risks are compared.

Results: Results indicated that dummy-based thoracic injury metrics were significantly lower with tSAB exposure (P <.001). Yet, when the controlled collision environment data were cross-correlated with NASS-CDS collisions, deployment of the tSAB indicated no association with thoracic injury (tho. MAIS 2+ unadjusted relative risk [RR] = 1.14; 90% confidence interval [CI], 0.80–1.62; tho. MAIS 3+ unadjusted RR = 1.12; 90% CI, 0.76–1.65).

Conclusion: The data from the controlled collision environment indicated an unequivocal benefit provided by the thoracic side airbag for the crash dummy; however, the real-world collisions demonstrate that no benefit is provided to the occupant. This has resulted from a noncorrelation between the crash test/dummy-based design taking the abstracting process too far to represent the real-world collision scenario.  相似文献   


16.
为探究约束系统在全承载客车正面碰撞事故中对乘客损伤的影响,利用有限元分析软件LS_DYNA建立某大客车正面碰撞仿真模型,并开展整车50 km/h正面100%重叠碰撞固定刚性壁障试验;从车身变形、加速度曲线和乘员损伤等3方面验证仿真模型;基于已验证的仿真模型,开展不同座椅间距、车厢位置及安全带类型的乘员运动响应和损伤等综...  相似文献   

17.
Child protection is an area of police work which has expanded in the last decade, leading to an increase in the number of police officers working in departments which specialise in investigating cases of child abuse. Police officers in this field may be at greater risk of experiencing secondary traumatic stress but there remains a paucity of research in this area of policing. Analogies can be drawn to existing research in policing and with social service workers involved in child protection. The paper finishes off with implications for police forces to ensure safe working environments and appropriate counselling for employees.  相似文献   

18.
Objective: The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts.

Methods: This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments.

Results: The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0).

Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation.

Conclusions: This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis and the spine for the models which makes the model response very sensitive to any variation in the spine posture. Consequently, the findings observed for the HBM cannot be extended to PMHS. Besides, pre-impact posture should be carefully quantified during experiments and the evaluation of HBM should take into account the variation in the predicted impact response due to the variation in the model posture.  相似文献   

19.
Objective: This study aims, by means of the WorldSID 50th percentile male, to evaluate thoracic loading and injury risk to the near-side occupant due to occupant-to-occupant interaction in combination with loading from an intruding structure.

Method: Nine vehicle crash tests were performed with a 50th percentile WorldSID male dummy in the near-side (adjacent to the intruding structure) seat and a THOR or ES2 dummy in the far-side (opposite the intruding structure) seat. The near-side seated WorldSID was equipped with 6 + 6 IR-Traccs (LH and RH) in the thorax/abdomen enabling measurement of bilateral deflection. To differentiate deflection caused by the intrusion, and the deflection caused by the neighboring occupant, time history curves were analyzed. The crash tests were performed with different modern vehicles, equipped with thorax side airbags and inflatable curtains, ranging from a compact car to a large sedan, and in different loading conditions such as car-to-car, barrier, and pole tests. Lateral delta V based on vehicle tunnel acceleration and maximum residual intrusion at occupant position were used as a measurement of crash severity to compare injury measurements.

Result: In the 9 vehicle crash tests, thoracic loading, induced by the intruding structure as well as from the far-side occupant, varied due to the size and structural performance of the car as well as the severity of the crash. Peak deflection on the thoracic outboard side occurred during the first 50 ms of the event. Between 70 to 150 ms loading induced by the neighboring occupant occurred and resulted in an inboard-side peak deflection and viscous criterion. In the tests where the target vehicle lateral delta V was below 30 km/h and intrusion less than 200 mm, deflections were low on both the outboard (20–40 mm) and inboard side (10–15 mm). At higher crash severities, delta V 35 km/h and above as well as intrusions larger than 350 mm, the inboard deflections (caused by interaction to the far-side occupant) were of the same magnitude or even higher (30–70 mm) than the outboard deflections (30–50 mm).

Conclusion: A WorldSID 50th percentile male equipped with bilateral IR-Traccs can detect loading to the thorax from a neighboring occupant making injury risk assessment feasible for this type of loading. At crash severities resulting in a delta V above 35 km/h and intrusions larger than 350 mm, both the inboard deflection and VC resulted in high risks of Abbreviated Injury Scale (AIS) 3+ injury, especially for a senior occupant.  相似文献   

20.
The effect of vehicle fleet mass on car crash fatalities was estimated, using a new mathematical model to isolate vehicle mass from related factors like size, stiffness and inherent protection. The model was based on fatality risk data, impact speed, fleet mass distribution, and collision probabilities. The fleet mass distribution was changed over 15 years to (a) a homogeneous fleet of 1300 kg cars, (b) a bimodal fleet of 600 and 1600 kg cars, and (c) a 300 kg lighter fleet.

Occupant and collision partner fatality risks were estimated for the new fleets. The new fleets were achieved by various strategies, and the average fatality rate was calculated after and during the transition to the new fleet.Occupant fatality risk decreased and partner risk increased as occupants changed to a heavier car. The average fatality rate was 59% higher after the transition to a bimodal fleet mass, and 11 % lower for a homogeneous fleet. A 300 kg lighter fleet had a 8% higher fatality rale, but the strategy influenced the number of fatalities accumulated during the transition. The safest strategy to attain the lighter fleet was to reduce the mass of the heaviest cars first.

It was concluded that vehicle fleet mass significantly affects traffic safety. Downsizing consequences can be compensated for by improving inherent vehicle protection or reducing impact speed. The fatalities during downsizing can be limited by choosing an appropriate strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号