首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Because of rapid increase in the urban population and hence road traffic, the vehicle–pedestrian crashes are more frequent and have become a major concern in road traffic safety. Though the bumper of a vehicle plays an important role to protect the vehicle body damage in low speed impacts, many bumpers particularly in larger vehicles are too stiff for pedestrian protection and safety. To prevent lower extremity injuries in car–pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injuries are caused. In the present work, a dynamic legform impactor model is introduced and validated against EEVC/WG17 criteria. The collision mechanism between a GMT bumper and the legform impactor model is investigated numerically using LS-DYNA software. The effect of the height of the impact point of bumper assembly to lower extremity injuries is also investigated. In this paper, it is shown that changing the local stiffness of bumper assembly due to the change in the height of the bumper and distribution of stiffness from upper parts of the bumper assembly to lower parts are the most important parameters in the pedestrian’s leg injuries. As lower extremity injuries are related to the lower bumper height, developing special legform impactors for different countries with different average person height seems essential in investigating the effect of people’s height on lower extremity injuries.  相似文献   

2.
Truck and bus frontal impacts account for a major proportion of pedestrian fatalities in many less motorized countries. To understand this phenomenon, we have collected injury data on pedestrian impacts with buses and trucks and performed computer simulations to identify critical design parameters at 15–45 km/h impact velocities for further investigation. A male dummy which was scaled to fifty percentile Indian dimensions has been used for simulations using MADYMO. Bumper height, bumper offset and grille inclination affect the pelvis and thorax forces and Head Injury Criterion values critically. Bumper width has less effect. Simulations were performed to optimize for the above–mentioned three parameters. Changes in front geometric parameters reduce injury to the upper body and head below safety limits for the existing force–displacement properties but do not affect leg injuries significantly. Hence bumpers need to be made less stiff. Injury data shows that pedestrians also sustain tibia fractures in bus/truck impacts in apparent low velocity impacts. The computer modeling does not offer adequate explanation for this phenomenon. These simulations confirm that it is theoretically possible to make truck/bus fronts safer for pedestrians in impacts up to 35 km/h.  相似文献   

3.
To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.  相似文献   

4.
To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.  相似文献   

5.
Vehicle acceleration and passenger compartment intrusion primarily determine car occupant injury risk. A new integrated vehicle-occupant model was developed and validated to predict these vehicle responses in offset, concentrated or full-width impact with various objects. The multi-body mathematical model consisted of a compartment, dash-panel and toepan-area and a front structure. The front structure was subdivided in 12 segments and a power-train, which were connected to the firewall by kinematic joints. The joints used local stiffness obtained from load-cell barrier crash-tests, and enabled local deformation of the vehicle front Similarly, the dash-panel and toepan were connected to the compartment, which enabled local intrusion into the compartment. A vehicle interior was modeled to enable contact-interactions with occupants, and the firewall geometry was included for interactions with the power-train.

The vehicle-model was validated with full frontal and 50% offset data and predicted vehicle acceleration, crush profile and local intrusion well. The validity of the model indicates its applicability in a wide range of frontal (non-distributed) collisions. Due to the use of local stiffness data, the model can greatly improve accident reconstruction research especially in frontal offset and pole impacts at both high and low speeds. The vehicle-model can be easily adjusted by changing vehicle-mass, size, or local stiffnesses of the front structure, and is a useful tool in compatibility research to estimate trends in car crash compatibility.  相似文献   

6.
In vehicle–pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

7.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

8.
Objectives: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians.

Methods: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization.

Results: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered.

Conclusions: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.  相似文献   


9.
Objective: Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs—for example, the European New Car Assessment Programme (Euro NCAP)—are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis.

The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB.

Methods: A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car.

The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using “harm”-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated.

Results: It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost.

Conclusions: A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.  相似文献   

10.
In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

11.
Objective: This work aims at investigating the influence of some front-end design parameters of a passenger vehicle on the behavior and damage occurring in the human lower limbs when impacted in an accident.

Methods: The analysis is carried out by means of finite element analysis using a generic car model for the vehicle and the lower limbs model for safety (LLMS) for the purpose of pedestrian safety. Considering the pedestrian standardized impact procedure (as in the 2003/12/EC Directive), a parametric analysis, through a design of experiments plan, was performed. Various material properties, bumper thickness, position of the higher and lower bumper beams, and position of pedestrian, were made variable in order to identify how they influence the injury occurrence. The injury prediction was evaluated from the knee lateral flexion, ligament elongation, and state of stress in the bone structure.

Results: The results highlighted that the offset between the higher and lower bumper beams is the most influential parameter affecting the knee ligament response. The influence is smaller or absent considering the other responses and the other considered parameters. The stiffness characteristics of the bumper are, instead, more notable on the tibia. Even if an optimal value of the variables could not be identified trends were detected, with the potential of indicating strategies for improvement.

Conclusions: The behavior of a vehicle front end in the impact against a pedestrian can be improved optimizing its design. The work indicates potential strategies for improvement. In this work, each parameter was changed independently one at a time; in future works, the interaction between the design parameters could be also investigated. Moreover, a similar parametric analysis can be carried out using a standard mechanical legform model in order to understand potential diversities or correlations between standard tools and human models.  相似文献   


12.
Abstract

Objective: The objective of this research study is to estimate the benefit to pedestrians if all U.S. cars, light trucks, and vans were equipped with an automated braking system that had pedestrian detection capabilities.

Methods: A theoretical automatic emergency braking (AEB) model was applied to real-world vehicle–pedestrian collisions from the Pedestrian Crash Data Study (PCDS). A series of potential AEB systems were modeled across the spectrum of expected system designs. Both road surface conditions and pedestrian visibility were accounted for in the model. The impact speeds of a vehicle without AEB were compared to the estimated impact speeds of vehicles with a modeled pedestrian detecting AEB system. These impacts speeds were used in conjunction with an injury and fatality model to determine risk of Maximum Abbreviated Injury Scale of 3 or higher (MAIS 3+) injury and fatality.

Results: AEB systems with pedestrian detection capability, across the spectrum of expected design parameters, reduced fatality risk when compared to human drivers. The most beneficial system (time-to-collision [TTC]?=?1.5?s, latency = 0?s) decreased fatality risk in the target population between 84 and 87% and injury risk (MAIS score 3+) between 83 and 87%.

Conclusions: Though not all crashes could be avoided, AEB significantly mitigated risk to pedestrians. The longer the TTC of braking and the shorter the latency value, the higher benefits showed by the AEB system. All AEB models used in this study were estimated to reduce fatalities and injuries and were more effective when combined with driver braking.  相似文献   

13.
Objective: Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk.

Methods: The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity—that is, knee ligament rupture and long bone fracture—was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given car's front-end design.

Results: Newer passenger cars exhibited a “flatter” front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk.

Conclusions: The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.  相似文献   


14.
Objectives: The aim of this article is to report on the possible relationships between tramway front-end geometry and pedestrian injury risk over a wide range of possible tramway shapes.

Methods: To study the effect of tramway front-end shape on pedestrian injury metrics, accidents were simulated using a custom parameterized model of tramway front-end and pedestrian models available with the MADYMO multibody solver. The approach was automated, allowing the systematic exploration of tramway shapes in conjunction with 4 pedestrian sizes (e.g., 50th percentile male or M50).

Results: A total of 8,840 simulations were run, showing that the injury risk is more important for the head than for other body regions (thorax and lower extremities). The head of the M50 impacted the windshield of the tramway in most of the configurations. Two antagonist mechanisms affecting impact velocity of the head and corresponding head injury criterion (HIC) values were observed. The first is a trunk rotation resulting from an engagement of the lower body that can contribute to an increase in head velocity in the direction of the tram. The second is the loading of the shoulder, which can accelerate the upper trunk and head away from the windshield, resulting in lower impact velocities. Groups of design were defined based on 2 main parameters (windshield height and offset), some of which seem more beneficial than others for tramway design. The pedestrian size and tramway velocity (30 vs. 20?km/h) also affected the results.

Conclusions: When considering only the front-end shape, the best strategy to limit the risk of head injury due to contact with the stiff windshield seems to be to promote the mechanism involving shoulder loading. Because body regions engaged vary with the pedestrian size, none of the groups of designs performed equally well for all pedestrian sizes. The best compromise is achieved with a combination of a large windscreen offset and a high windscreen. Conversely, particularly unfavorable configurations are observed for low windshield heights, especially with a large offset. Beyond the front-end shape, considering the stiffness of the current windshields and the high injury risks predicted for 30?km/h, the stiffness of the windshield should be considered in the future for further gains in pedestrian safety.  相似文献   

15.
This study was aimed at investigating the injury mechanism of pedestrian chests in collisions with passenger vehicles of various frontal shapes and examining the influence of the local structural stiffness on the chest injury risk by using the headform impact test at the chest contact area of the vehicle. Three simulations of vehicle to pedestrian collisions were conducted using three validated pedestrian finite element (FE) models of three pedestrian heights of 177 (AM50th), 165 and 150 cm and three FE vehicles models representing a one-box vehicle, a minicar and a medium car. The validity of the vehicle models was evaluated by comparing the headform acceleration against the measured responses from headform impact tests. The chest impact kinematics and the injury mechanisms were analyzed in terms of the distribution of the von Mises stress of the ribcage and in terms of the chest deflections. The chest contact locations on the front panel and the bonnet top were identified in connection to the causation of rib fractures. The risk of rib fractures was predicted by using the von Mises stress distribution. The headform impact tests were carried out at the chest contact area on the front panel and bonnet to examine the safety performance with respect to pedestrian chest protection. In simulations of the one-box vehicle to pedestrian collisions, the chest was struck directly by the frontal structure at a high velocity and deformed substantially, since a shear force was generated by the stiff windshield frame. The acceleration of the headform was related to the rib deflections. The injury threshold of the ribcage deflection (42 mm) corresponded to the headform average acceleration of 68 G. In the minicar collision, the chest was struck with the bonnet top and cowl area at a low velocity, and the deformation was small due to the distributed contact force between the chest and the bonnet top. Besides, the ribcage deformation was too small for bridging a relation between the headform accelerations and rib deflections. In the medium car collision, the deformation mode of the chest was similar to that in the minicar collision. The chest collided with the bonnet top at a low velocity and deformed uniformly. The deflection of the ribs had an observable correlation with the headform accelerations measured in the headform impact tests. The frontal shape of a vehicle has a large influence on a pedestrian’s chest loadings, and the chest deformation depends on the size of the pedestrian and the stiffness of the vehicle. The one-box passenger vehicle causes a high chest injury risk. The headform impactor test can be utilized for the evaluation of the local stiffness of a vehicle’s frontal structure. The reduction of the headform acceleration is an effective measure for pedestrian chest protection for specific shapes of vehicles by efficacy in modifying the local structural stiffness.  相似文献   

16.
Objective: European car design regulations and New Car Assessment Program (NCAP) ratings have led to reductions in pedestrian injuries. The aim of this study was to evaluate the impact of improving vehicle front design on mortality and morbidity due to pedestrian injuries in a European country (Germany) and 2 countries (the United States and India) that do not have pedestrian-focused NCAP testing or design regulations.

Methods: We used data from the International Road Traffic and Accident Database and the Global Burden of Disease project to estimate baseline pedestrian deaths and nonfatal injuries in each country in 2013. The effect of improved passenger car star ratings on probability of pedestrian injury was based on recent evaluations of pedestrian crash data from Germany. The effect of improved heavy motor vehicle (HMV) front end design on pedestrian injuries was based on estimates reported by simulation studies. We used burden of disease methods to estimate population health loss by combining the burden of morbidity and mortality in disability-adjusted life years (DALYs) lost.

Results: Extrapolating from evaluations in Germany suggests that improving front end design of cars can potentially reduce the burden of pedestrian injuries due to cars by up to 24% in the United States and 41% in India. In Germany, where cars comply with the United Nations regulation on pedestrian safety, additional improvements would have led to a 1% reduction. Similarly, improved HMV design would reduce DALYs lost by pedestrian victims hit by HMVs by 20% in each country. Overall, improved vehicle design would reduce DALYs lost to road traffic injuries (RTIs) by 0.8% in Germany, 4.1% in the United States, and 6.7% in India.

Conclusions: Recent evaluations show a strong correlation between Euro NCAP pedestrian scores and real-life pedestrian injuries, suggesting that improved car front end design in Europe has led to substantial reductions in pedestrian injuries. Although the United States has fewer pedestrian crashes, it would nevertheless benefit substantially by adopting similar regulations and instituting pedestrian NCAP testing. The maximum benefit would be realized in low- and middle-income countries like India that have a high proportion of pedestrian crashes. Though crash avoidance technologies are being developed to protect pedestrians, supplemental protection through design regulations may significantly improve injury countermeasures for vulnerable road users.  相似文献   


17.
A rapid development of both pedestrian passive and active safety, such as pedestrian bonnets/airbags and autonomous braking, is in progress. The aim of this study was to investigate the potential pedestrian head injury reduction from hypothetical passive and active countermeasures compared to an integrated system. The German In-Depth Accident Study (GIDAS) database was queried from 1999 to 2008 for severely (AIS3+) head injured pedestrians when struck by car or van fronts. This, resulted in 54 cases where information was sufficient. The passive countermeasure was designed to mitigate head injuries caused by the bonnet area, A-pillars, and the remaining windscreen area up to 2.1 m wrap around distance (WAD). The active countermeasure was an autonomous braking system, which was activated one second prior to impact if the pedestrian was visible to a forward-looking sensor. The integrated system was a direct combination of the passive and active countermeasures. Case by case the effect from each of the active, passive and integrated systems was estimated. For the integrated system, the influence of the active system on the passive system performance was explicitly modeled in each case. The integrated system resulted in 50% (95% confidence interval: 30-70%) greater effectiveness than the active countermeasure in reducing the number of pedestrians sustaining severe (AIS3+) head injuries, and 90% (95% CI: 50-150%) greater effectiveness than the passive countermeasure. Integrated systems of passive and active pedestrian countermeasures offer a considerably increased potential for head injury reduction compared to either of the two systems alone.  相似文献   

18.
A sizeable proportion of adult pedestrians involved in vehicle-versus-pedestrian accidents suffer head injuries, some of which can lead to lifelong disability or even death. To understand head injury mechanisms, in-depth accident analyses and accident reconstructions were conducted. A total of 120 adult pedestrian accident cases from the GIDAS (German in-depth accident study) database were analyzed, from which 10 were selected for reconstruction. Accident reconstructions initially were performed using multi-body system (MBS) pedestrian and car models, so as to calculate head impact conditions, like head impact velocity, head position and head orientation. These impact conditions then were used to set the initial conditions in a simulation of a head striking a windshield, using finite element (FE) head and windshield models. The intracranial pressure and stress distributions of the FE head model were calculated and correlated with injury outcomes. Accident analysis revealed that the windshield and its surrounding frames were the main sources of head injury for adult pedestrians. Reconstruction results indicated that coup/contrecoup pressure, Von Mises and shear stress were important physical parameters to estimate brain injury risks.  相似文献   

19.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

20.
Objective: The present study estimates pedestrians' risk of death according to impact speed when hit by a passenger car in a frontal collision.

Methods: Data were coded for all fatal crashes in France in 2011 and for a random sample of 1/20th of all road injuries for the same year and weighted to take into account police underreporting of mild injury. A cloglog model was used to optimize risk adjustment for high collision speeds. The fit of the model on the data was also improved by using the square of the impact speed, which best matches the energy dissipated in the collision.

Results: Modeling clearly demonstrated that the risk of death was very close to 1 when impact speeds exceeded 80 km/h. For speeds less than 40 km/h, because data representative of all crashes resulting in injury were used, the estimated risk of death was fairly low. However, although the curve seemed deceptively flat below 50 km/h, the risk of death in fact rose 2-fold between 30 and 40 km/h and 6-fold between 30 and 50 km/h. For any given speed, the risk of death was much higher for more elderly subjects, especially those over 75 years of age. These results concern frontal crashes involving a passenger car. Collisions involving trucks are far less frequent, but half result in the pedestrian being run over, incurring greater mortality.

Conclusions: For impact speeds below 60 km/h, the shape of the curve relating probability of death to impact speed was very similar to those reported in recent rigorous studies. For higher impact speeds, the present model allows the curve to rise ever more steeply, giving a much better fit to observed data. The present results confirm that, when a pedestrian is struck by a car, impact speed is a major risk factor, thus providing a supplementary argument for strict speed limits in areas where pedestrians are highly exposed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号