首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

2.
Objective: To evaluate the influence of forward-facing child restraint systems’ (FFCRSs) side impact structure, such as side wings, on the head kinematics and response of a restrained, far- or center-seated 3-year-old anthropomorphic test device (ATD) in oblique sled tests.

Methods: Sled tests were conducted utilizing an FFCRS with large side wings and with the side wings removed. The CRS were attached via LATCH on 2 different vehicle seat fixtures—a small SUV rear bench seat and minivan rear bucket seat—secured to the sled carriage at 20° from lateral. Four tests were conducted on each vehicle seat fixture, 2 for each FFCRS configuration. A Q3s dummy was positioned in FFCRS according to the CRS owner's manual and FMVSS 213 procedures. The tests were conducted using the proposed FMVSS 213 side impact pulse. Three-dimensional motion cameras collected head excursion data. Relevant data collected during testing included the ATD head excursions, head accelerations, LATCH belt loads, and neck loads.

Results: Results indicate that side wings have little influence on head excursions and ATD response. The median lateral head excursion was 435 mm with side wings and 443 mm without side wings. The primary differences in head response were observed between the 2 vehicle seat fixtures due to the vehicle seat head restraint design. The bench seat integrated head restraint forced a tether routing path over the head restraint. Due to the lateral crash forces, the tether moved laterally off the head restraint reducing tension and increasing head excursion (477 mm median). In contrast, when the tether was routed through the bucket seat's adjustable head restraint, it maintained a tight attachment and helped control head excursion (393 mm median).

Conclusion: This testing illustrated relevant side impact crash circumstances where side wings do not provide the desired head containment for a 3-year-old ATD seated far-side or center in FFCRS. The head appears to roll out of the FFCRS even in the presence of side wings, which may expose the occupant to potential head impact injuries. We postulate that in a center or far-side seating configuration, the absence of door structure immediately adjacent to the CRS facilitates the rotation and tipping of the FFCRS toward the impact side and the roll-out of the head around the side wing structure. Results suggest that other prevention measures, in the form of alternative side impact structure design, FFCRS vehicle attachment, or shared protection between the FFCRS and the vehicle, may be necessary to protect children in oblique side impact crashes.  相似文献   

3.
This article contains the results of research into the impact of implementation of the requirements mentioned in Standard No. OHSAS 18001:2007 to reduce the number of injuries at work and the financial costs incurred in this way. The study was conducted on a determined sample by a written questionnaire survey method in the Republic of Croatia. The objective of the empirical research is to determine the impact of implementation of the requirements of Standard No. OHSAS 18001:2007 to reduce the number of injuries at work and financial costs in Croatia in business organizations that implement these requirements. To provide a broader picture, the research included the collection and analysis of data on the impact of the Standard No. OHSAS 18001:2007 on accidents and fatalities at work. Research findings are based on the analysis of performed statistical data where correlation and regression analysis has been applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号