首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
2.
The objective of this research was to develop a mechanistic model for quantifying N2O emissions from activated sludge plants and demonstrate how this may be used to evaluate the effects of process configuration and diurnal loading patterns. The model describes the mechanistic link between the factors recognized to correlate positively with N2O emissions. The primary factors are the presence of ammonia and nitrite accumulation. Low dissolved oxygen concentrations also may be implicated through differential impacts on ammonia-oxidizing bacteria (AOB) versus nitrite-oxidizing bacteria (NOB) activity. Factors promoting N2O emissions at treatment plants are discussed below. The model was applied to data from laboratory and pilot-scale systems. From a practical standpoint, plant configuration (e.g., plug-flow versus complete-mix), influent loading patterns (and peak load), and certain operating strategies (e.g., handling of return streams) are all important in determining N2O emissions.  相似文献   

3.
Modelling complex systems such as farms often requires quantification of a large number of input factors. Sensitivity analyses are useful to reduce the number of input factors that are required to be measured or estimated accurately. Three methods of sensitivity analysis (the Morris method, the rank regression and correlation method and the Extended Fourier Amplitude Sensitivity Test method) were compared in the case of the CERES-EGC model applied to crops of a dairy farm. The qualitative Morris method provided a screening of the input factors. The two other quantitative methods were used to investigate more thoroughly the effects of input factors on output variables. Despite differences in terms of concepts and assumptions, the three methods provided similar results. Among the 44 factors under study, N2O emissions were mainly sensitive to the fraction of N2O emitted during denitrification, the maximum rate of nitrification, the soil bulk density and the cropland area.  相似文献   

4.
Environmental Science and Pollution Research - Nitrous oxide (N2O) is a strong greenhouse gas, and it is of great significance for N2O reduction to study the effects of biochar on its production...  相似文献   

5.
Hou H  Peng S  Xu J  Yang S  Mao Z 《Chemosphere》2012,89(7):884-892
Water management is one of the most important practices that affect methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. A field experiment was designed to study the effects of controlled irrigation (CI) on CH4 and N2O emissions from paddy fields, with traditional irrigation (TI) as the control. The effects of CI on CH4 and N2O emissions from paddy fields were very clear. The peaks of CH4 emissions from the CI paddies were observed 1-2 d after the water layer disappeared. Afterward, the emissions reduced rapidly and remained low until the soil was re-flooded. A slight increase of CH4 emission was observed in a short period after re-flooding. N2O emissions peaks from CI paddies were all observed 8-10 d after the fertilization at the WFPS ranging from 78.1% to 85.3%. Soil drying caused substantial N2O emissions, whereas no substantial N2O emissions were observed when the soil was re-wetted after the dry phase. Compared with TI, the cumulative CH4 emissions from the CI fields were reduced by 81.8% on the average, whereas the cumulative N2O emissions were increased by 135.4% on the average. The integrative global warming potential of CH4 and N2O on a 100-year horizon decreased by 27.3% in the CI paddy fields, whereas no significant difference in the rice yield was observed between the CI and TI fields. These results suggest that CI can effectively mitigate the integrative greenhouse effect caused by CH4 and N2O emissions from paddy fields while ensuring the rice yield.  相似文献   

6.
7.
Rates of CO2 production in the reaction CO + OH and CO + OH + halocarbon have been used to determine rate constants for some OH + halocarbon reactions at 29.5°C relative to that of k(CO + OH) = 2.69 × 10?13 cm3 molecule?1 sec?1. The following rate constants were obtained: k(OH + CH3Cl) = 3.1 ± 0.8, k(OH + CH2Cl2) = 2.7 ± 1.0, k(OH + C2H5Cl) = 44.0 ± 25, k(OH + CICH2CH2CI) = 6.5, (<29) and k(OH + CH3CCl3) = 2.1 (<5.7) cm3 molecule?1 sec?1 × 10?14. The k values, CH2Cl2 excepted, are in substantial agreement with determinations made in nonoxygen environments. The present results for CH2Cl2 are almost certainly in error due to difficulties with the competitive approach used.  相似文献   

8.
The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), (Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO3. The rate coefficients were determined to be (1.53±0.23)×10−13 and (1.39±0.19)×10−14 cm3 molecule−1 s−1 for reactions of NO3 with (Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N2O5 as source of NO3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO2 allowed us to determine the rate coefficients for the N2O5 reactions to be (5.0±2.8)×10−19 cm3 molecule−1 s−1 for (Z)-pent-2-en-1-ol, and (9.1±5.8)×10−19 cm3 molecule−1 s−1 for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号