首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B Z Zhu  S Shechtman  M Chevion 《Chemosphere》2001,45(4-5):463-470
Both pentachlorophenol (PCP) and copper compounds have been widely used as wood preservatives, and are commonly found not only in the area near wood-preserving facilities, but also in body fluids and tissues of people who are not occupationally exposed to them. In this study, we found that exposing bacteria to a combination of PCP and copper at non- or sub-toxic concentrations resulted in enhanced cytotoxic effect in a synergistic mode as indicated by both the inhibition of growth and the lowering of the colony-forming ability. The toxicity of the combination PCP/Cu(II) was relieved by hydrophilic chelating agents, thiol compounds and adventitious proteins, but was markedly potentiated by low levels of the lipophilic metal chelating agents.  相似文献   

2.
A method for estimation of the maximum substrate utilization rate (q(max)) using batch reactors with denitrification biofilm was introduced and compared with the traditional method of using batch reactors with suspended growth for q(max) estimation. The values of q(max) obtained from the suspended-growth reactors (0.69 to 0.71 g N/g volatile suspended solids [VSS] x d) and from the attached-biomass reactors (0.74 to 0.85 g N/g VSS x d) are similar and within the range of the values reported in the literature (0.23 to 2.88 g N/g VSS x d). Therefore, the intrinsic kinetic parameter, q(max), can be obtained using attached-growth batch reactors, if the effectiveness factor, eta, is approximately equal to 1 and the bulk concentration of the rate-limiting substrate, C, is much higher than the half-velocity constant, K(S). The attached-growth batch reactor method is unique, because the biomass used in the batch tests is the same as that present in the parent reactor under investigation.  相似文献   

3.
Soluble salts are enriched in sewage sludge compost because of their inherent derivation. Accordingly, the content of soluble salt in sludge compost is usually much higher than most seedlings can tolerate. To determine whether sludge compost is suitable for use as a nursery substrate, some experiments were conducted. Reduction of the electrical conductivity (EC) value could improve seed germination in saturated extract from sludge compost. In addition, water elution and mixing dilution with raw soil were all shown to be able to alleviate saline inhibition on seed germination and seedling growth, including stem diameter, seedling height, and above-ground weight. Overall, salinity is a crucial problem when sewage sludge compost is reused as a nursery substrate, and some effective and convenient approaches to reduce salt should be served prior to its reuse.
Implications: Sewage sludge after being composted is usually reused as organic fertilizer or plant substrate. However, salt is the main problem during its reclamation. What is the highest salt level the seedling can tolerate? Which types of salts are effective in salinity of sludge-amended substrate? Meanwhile, can the salinity be reduced through water elution or soil mixing dilution? This paper is the first to investigate the salinity and its reduction of sewage sludge compost prior to its use in the development of nursery substrate.  相似文献   

4.
Present analyses of random amplified polymorphic DNA (RAPD) and Biolog GN substrate utilization pattern are combined to further study the diversity of microbial communities in four soils affected by agricultural chemicals. The results showed that the four soil microbial communities were apparently distinguishable in the diversity at RAPD level in terms of the richness and modified richness in the summer, which supports our previous report using the same soils in winter. A significant difference for the average well color development (AWCD) at 72 h incubation was found among the soils in winter using Biolog GN substrate utilization pattern, but this difference was not found among the soils in summer. However, Shannon-Weaver indices for microbial communities in the summer soils polluted by agricultural chemicals were significantly higher than those in winter at metabolic level; in contrast, no significant difference existed between the two seasons for microbial communities in the soil without chemical pollution. Present results suggest that the combined approach using RAPD and substrate utilization pattern could be used to effectively quantify microbial community diversity and its changes among the seasons in the soils affected by agricultural chemicals, simultaneously at molecular and physiological levels.  相似文献   

5.
Muhammad A  Xu J  Li Z  Wang H  Yao H 《Chemosphere》2005,60(4):508-514
A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.  相似文献   

6.

Introduction

The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods.

Materials and methods

Direct current magnetron sputtering (DCMS) for 40?s of Cu on cotton inactivated Escherichia coli within 30?min under visible light and within 120?min in the dark. For a longer DCMS time of 180?s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30?min, as was the case for the 40-s sputtered sample.

Results and discussion

This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray?Cbrown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP.

Conclusion

Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu2O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R q and R a were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial films.  相似文献   

7.
在分析中 ,对混凝法处理铝合金废水所得污泥再利用进行了研究 ,得到了适宜的操作条件。结果表明 ,用浓硫酸溶解污泥的最佳用量为 0 0 6— 0 0 8mL/g湿污泥 ,污泥的溶解率可达 80 % ,铝的溶出率也可达 90 %以上。把污泥的溶解液作混凝剂回用于废水的混凝处理也取得了良好的效果。  相似文献   

8.
9.
10.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   

11.
A thin film coats impervious urban surfaces that can act as a source or sink of organic pollutants to the greater environment. We review recent developments in the understanding of film and film-associated pollutant behavior and incorporate them into an unsteady-state version of the fugacity based Multimedia Urban Model (MUM), focusing on detailed considerations of surface film dynamics. The model is used to explore the conditions under which these atmospherically-derived films act as a temporary source of chemicals to the air and/or storm water. Assuming film growth of 2.1 nm d−1 (Wu et al., 2008a), PCB congeners 28 and 180 reach air-film equilibrium within hours and days, respectively. The model results suggest that the film acts as a temporary sink of chemicals from air during dry and cool weather, as a source to air in warmer weather, and as a source to storm water and soil during rain events. Using the downtown area of the City of Toronto Canada, as a case study, the model estimates that nearly 1 g d−1 of ∑5PCBs are transferred from air to film to storm water.  相似文献   

12.
A pollution model for street-level air.   总被引:11,自引:0,他引:11  
  相似文献   

13.
选择石砾、粗砂、细砂作为垂直流人工湿地的基质在实验室内研究不同粒径的基质在不同的水力负荷和对不同浓度污水对污染物的去除效果,根据实验结果选取基质应用于示范基地,利用人工湿地模型Subwet2.0对人工湿地示范基地进行模型模拟,为农村生活污水人工湿地系统的处理设计及模拟出水水质提供参考。研究结果表明:石砾、粗砂、细砂为基质对污染物去除率较好的水力负荷分别为小于0.9、0.6和0.3 m/d时;石砾基质对COD的最佳污染负荷为970 mg/L,粗砂、细砂基质为468~970 mg/L;粗砂和细砂基质对NH4+-N去除效果相似;在北方地区垂直流人工湿地主体基质建议使用粗砂或石砾以减少堵塞的风险;利用Subwet2.0模型模拟人工湿地示范基地的出水水质,根据当地条件在反应参数的取值范围内调整了相应的参数值,模拟的结果符合性很高。  相似文献   

14.
Cyanide is a major environmental pollutant of the chemical and metallurgical industries. Although extremely toxic, cyanide can enzymatically be converted to the less toxic thiocyanate by rhodaneses (thiosulfate:cyanide sulfurtransferases, EC 2.8.1.1). We engineered a genetic system to express high levels of recombinant Pseudomonas aeruginosa rhodanese (r-RhdA) in Escherichia coli, and used this organism to test the role of r-RhdA in cyanide detoxification. Inducible expression of the rhdA gene under the control of the hybrid T7-lacO promoter yielded active r-RhdA over a 4-h period, though r-RhdA-expressing E. coli showed decreased viability starting from 1 h post-induction. At this time, Western blot analysis and enzymatic assay showed r-RhdA partition between the cytoplasm (95%) and the periplasm (5%). The accessibility of thiosulfate to r-RhdA was a limiting step for the sulfur transfer reaction in the cellular system, but cyanide conversion to thiocyanate could be increased upon permeabilization of the bacterial membrane. Specific r-RhdA activity was higher in the whole-cell assay than in the in vitro assay with pure enzyme (2154 vs. 816 micromol min-1 mg-1 r-RhdA, respectively), likely reflecting enzyme stability. The r-RhdA-dependent cyanide detoxification resulted in increased resistance of r-RhdA overexpressing E. coli to 5 mM cyanide. Bacterial survival was paralleled by release of thiocyanate into the medium. Our results indicate that cyanide detoxification by engineered E. coli cells is feasible under laboratory conditions, and suggest that microbial rhodaneses may contribute to cyanide transformation in natural environments.  相似文献   

15.
Reliable design and operation of biological wastewater treatment systems demand robust models of biological degradation processes. However, methods to directly measure key bacterial growth kinetics have not been readily available. Those methods that are available rely on the classic measurement of aerobic respiration using oxygen uptake take rates. This paper shows how the thymidine assay can be used as a rapid and direct measurement of bacterial specific growth rates (mu) in situ for an anaerobic treatment process, independent of aerobic respiration. A filtration-based assay is applied and evaluated a dispersed-phase high-rate anaerobic treatment process, with results obtained in less than an hour. The chemical oxygen demand (COD) biomass in the reactor was 0.52 kg COD m(-3) and the specific growth rate of these anaerobic bacteria was 0.8 +/- 0.2 d(-1). It took the bacterial populations 21.6 hours to double. This is an important advancement from existing methods that use aerobic respiration as a pseudo measurement of bacterial specific growth rates. The method allows rapid and direct measures of microbial growth rates for anaerobic treatment processes.  相似文献   

16.
Five bacteria were isolated from contaminated sites in Nigeria and South Africa using the culture enrichment technique. They were subjected to standard cultural, biochemical and microbiological techniques and identified to be species of Bacillus, Burkholderia, Corynebacterium, Micrococcus and Pseudomonas. Axenic cultures of the bacterial isolates utilized 1,2-dichloroethane (1,2-DCE) as the sole carbon source up to a final substrate concentration of 10 mM. Their mean generation time in 1,2-DCE ranged significantly (P<0.05) from 9.77 to 15.72 h with the maximum chloride release ranging between 59% and 86%. All the bacterial isolates produced two different dehalogenases, viz. one which is heat labile and specific for halogenated alkanes with optimum activity at a pH of 7.5 and the other which is more heat stable with a higher pH optimum of 9.0 and specific for halogenated alkanoic acids. However, the two enzyme types when tested demonstrated wide substrate specificities. It is therefore adjudged that these organisms may play a vital role in the bioremediation of sites polluted with chlorinated hydrocarbons.  相似文献   

17.
Filamentous bulking in activated sludge systems occurs when filamentous organisms outgrow floc-forming bacteria and interfere with sludge settling. The competition between filaments and floc formers has been described previously using the kinetic selection and filamentous backbone theories. We hypothesized that differences in decay rates and storage abilities also affect this competition. We tested this hypothesis by integrating these four factors into a substrate-utilization model to predict and explain coexistence in a completely mixed reactor. In addition, filamentous and nonfilamentous sludges were developed in laboratory-scale reactors and analyzed to determine decay rates. The modeling results showed coexistence of the two organism types, and sensitivity analysis showed that the kinetic parameters, storage rate constants, and backbone coefficient had the greatest effect on the simulation results. Monte Carlo simulation showed the effect of storage, and the ranges of dilution rates wherein one group outcompeted the other were delineated.  相似文献   

18.
19.
采用被吡唑酮废液驯化、分离、筛选后的林可霉素菌,并对其在摇瓶上利用吡唑酮废液中的硫酸铵发酵(7 d)生产林可霉素进行了研究。实验结果表明,废液加入培养基体积比都为1∶10,实验1中菌丝代谢和对照比正常,其中还原糖利用最快,在发酵后期为0.24 mg/L,林可霉素起步效价最低为2 100 IU/mL,与对照相比最后发酵效价降低了70 IU/mL;实验2发酵过程pH值偏低,全程为5.86~6.50,氨基氮代谢缓慢为40 mg/100 mL,最后林可霉素效价最低为4 480 IU/mL;实验3中废液在发酵进入48 h中后期的时候补入能促进菌丝体分泌,最后林可霉素为5 180 IU/mL,比对照发酵水平高出8.82%。可见实验3的实验设计有利于林可霉素菌利用吡唑酮废液生产林可霉素,为废物循环利用、变废为宝的可行性作了有意义尝试。  相似文献   

20.
Kinetics of phenol and chlorophenol utilization by Acinetobacter species   总被引:9,自引:0,他引:9  
Hao OJ  Kim MH  Seagren EA  Kim H 《Chemosphere》2002,46(6):797-807
Although microbial transformations via cometabolism have been widely observed, the few available kinetic models of cometabolism have not adequately addressed the case of inhibition from both the growth and nongrowth substrates. The present study investigated the degradation kinetics of self-inhibitory growth (phenol) and nongrowth (4-chlorophenol, 4-CP) substrates, present individually and in combination. Specifically, batch experiments were performed using an Acinetobacter isolate growing on phenol alone and with 4-CP present. In addition, batch experiments were also performed to evaluate the transformation of 4-CP by resting, phenol-induced Acinetobacter cultures. The Haldane kinetic model adequately predicted the biodegradation of phenol alone, although a slight discrepancy was noted in cases of higher initial phenol concentrations. Similarly, a Haldane model for substrate utilization was also able to describe the trends in 4-CP transformation by the resting cell cultures. The 4-CP transformation by the Acinetobacter species growing on phenol was modeled using a competitive kinetic model of cometabolism, which included growth and nongrowth substrate inhibition and cross-inhibition terms. Excellent agreement was obtained between the model predictions using experimentally estimated parameter values and the experimental data for the synchronous disappearance of phenol and 4-CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号