共查询到20条相似文献,搜索用时 31 毫秒
1.
蚯蚓对菇渣中纤维素和木质素生物转化的研究 总被引:1,自引:0,他引:1
为了探索农业废弃香菇菇渣"减量化、无害化、资源化"循环化利用的有效途径.本实验按照不同碳氮比设置菇渣混合基质,接种蚯蚓(Eisenia foetida)对其进行生物转化.实验培养56 d,每14 d取样,分别测定了总氮、总有机碳、木质素和纤维素含量,脲酶、蔗糖酶、纤维素酶和多酚氧化酶活性变化情况,以及菇渣生物转化前后的结构变化情况(扫描电子显微镜SEM)和生物转化产物浸提液的发芽率等指标.结果显示:在蚯蚓生物转化过程中,各处理组总氮、总有机碳和木质纤维素含量与处理前相比均有不同程度的降低,其中,碳氮比为25的处理组纤维素和木质素的降解率最高,分别为50.06%和77.01%;各个处理组中脲酶、蔗糖酶、纤维素酶和多酚氧化酶活性呈不同程度的变化趋势,其中,碳氮比为25的处理组纤维素酶活性增加最多,增加了81.25%;扫描电镜结果显示,蚯蚓生物转化可以将菌渣碎片化;另外,蚯蚓堆肥产物浸提液可以提高黑麦草发芽率.综上,推测碳氮比为25的蚯蚓生物转化体系更有利于菇渣基质处理. 相似文献
2.
动物消化机制用于木质纤维素的厌氧消化 总被引:1,自引:1,他引:1
木质纤维素是地球上最丰富的可再生资源,食草动物和食木昆虫能高效消化植物中的木质纤维素,模拟动物消化系统的厌氧消化反应器却达不到相应的效果.为了更好地理解动物消化机理,并应用于厌氧消化反应器的设计和运行,对食草动物和食木昆虫的消化机制以及木质纤维素厌氧消化工艺的发展趋势进行了综述.动物消化系统的高效消化是其消化道中各种酶的协同作用以及一系列物理和生物化学活动的结果.强大的预处理过程能有效支持微生物发酵系统,如反刍动物的反刍、食木昆虫分泌的纤维素酶的催化及食木昆虫其消化道中的碱处理等;沿消化道形成的氧浓度梯度可能刺激一些微生物的水解活性;固体停留时间、消化物流动和终产物排除的有序安排,均能促进动物高效消化木质纤维素.源于瘤胃的厌氧消化工艺接种了瘤胃中的微生物降解木质纤维素,但其厌氧反应器内的环境条件对发酵的限制远远大于瘤胃发酵或后肠发酵的情况.因此,模拟动物消化机制可以更有效促进厌氧消化工艺降解木质纤维素类固体有机物废物. 相似文献
3.
农作物秸秆结构复杂,酸化效果可能与传统糖类物料不一致。为方便考察纤维素类物料厌氧酸化效果,文章选取成分相对单一的滤纸为原料,考察了酶活浓度、反应时间、酵母菌接种量(F/M)等因素对纤维素经纤维素酶和酵母菌联合作用后的乙醇、乙酸产量的影响,及对厌氧发酵过程的影响分析。结果表明,当纤维素酶单独作用时,酶活浓度120 U/g、温度50℃、pH值4.8、水解24 h时可获得最大葡萄糖产率:73.7 mg/g(转化率为24.9%);纤维素酶和酵母菌分步糖化发酵(separate hydrolysis and fermentation,SHF)工艺中,F/M值为2:1、反应96 h可得最大乙醇产率:119.3 mg/g(转化率为42%);纤维素酶和酵母菌同步糖化发酵(simultaneous saccharification andfermentation,SSF)工艺中,F/M值为1:2、反应120 h得到最大乙醇产率:396.0 mg/g(转化率为58.2%)。F/M值为2:1、反应120 h时,SSF工艺比SHF工艺的乙醇产量提高了34.91%。 相似文献
4.
常温木质纤维素分解菌群的筛选与特性研究 总被引:2,自引:2,他引:2
为获得一组常温条件下加速木质纤维素腐解的菌群,利用限制性培养法,筛选到一组在室温(28℃)条件下,5 d可分解天然稻秆总重39.6%的菌群.仅用质谱仪的一个CP-Chirasil-Dex CB毛细管柱就能够检测到丙酸、乙醇、异丙酸、4-氨基-1-丁醇、丁酸、硅烷-二乙基、乳酸、乙二醇、邻苯二甲酸二乙酯、甘油等10种以上有机物.定量分析挥发性产物,发现其种类和浓度随时间变化很大.用变性梯度凝胶电泳(DGGE)检测菌群的动态变化,发现在培养不同时期菌种组成差异很大,通过对各条带近缘种网上比对结果可见,该菌群具有丰富的菌种组成多样性,菌群内微生物分别归属Clostridiumsp.、Brevibacillussp.、Rhizobiumsp.、Bacteriumsp.等4个属. 相似文献
5.
简青霉[Penicillium simplicissimum(Oudem.)Thom BGA]能分泌木质纤维素降解酶,其中半纤维素酶、纤维素酶、木质素过氧化物酶、锰过氧化酶和漆酶的最大酶活分别为146.82 Iu·g-1、2.78 U·g-1、47.97 U·g-1、34.56 U·g-1和17.94 U·g-1.实验结果和SPSS统计分析表明,简青霉产木质纤维素酶的能力与木质纤维素的结构有很大的关系,其对木质纤维素的降解可能是几种木质纤维素酶之间协同作用的结果.在30 d的固态发酵中,半纤维素含量与发酵天数呈显著负相关(r=-0.946,P<0.01),纤维素与木质素的降解趋势呈显著负相关(r=-0.818,P<0.05).木质素过氧化物酶和锰过氧化物酶在降解木质素的同时对半纤维素和纤维素进行协同降解,是非选择性的木质素降解酶.木质素过氧化物酶、锰过氧化物酶与纤维素酶之间呈显著相关(相关性依次为r=0.922,P<0.01;r=0.807,P<0.05).研究还发现生物吸附在简青霉对液态碱木质素的去除中起到了非常重要的作用. 相似文献
6.
采用3 种稀酸组合(10%乙酸、10%乙酸加0.5%硝酸以及10%乙酸加0.5%磷酸),在常温条件下,对3 种木质纤维素样品(滤纸、中性复印纸和无油墨报纸)进行预处理,分别考察预处理对生物质组成纤维素、半纤维素和木质素的作用.并选取预处理后的无油墨报纸进行厌氧消化实验,研究不同稀酸预处理方式对木质纤维素厌氧消化的影响.结果表明,酸处理组能水解5%±1%纤维素和88%±1%的半纤维素,但是不能水解木质素;乙酸预处理降低了木质纤维素的亲水性和生物可降解性,从而降低了初始厌氧消化效率.添加0.5%的磷酸或0.5%硝酸不会明显改善乙酸对木质纤维素的水解效果.但是,添加磷酸的处理组在厌氧消化初期微生物量较少的情况下,能为微生物生长提供磷元素,有利于厌氧消化的启动;而添加硝酸的处理组不能缓解预处理对木质纤维素基质性质的影响,而且导致了丙酸的大量积累,从而恶化了厌氧消化的效果. 相似文献
7.
预处理破稳污泥木质纤维素并厌氧降解实验研究 总被引:1,自引:1,他引:1
剩余污泥中往往含有大量木质纤维素物质,其在厌氧消化过程中难以降解,最终残留于熟污泥中,这也是导致污泥有机物稳定并转化能源效率低下的主要原因之一.针对污泥中木质纤维素的结构稳定性,本实验选择酸、碱、热解及超声波4种预处理方式,采用适宜的条件预处理剩余污泥,在一定程度上破坏污泥中木质纤维素结构,继而进行污泥厌氧消化,获得了较好的木质纤维素降解率.同时,实验筛选出热解为最佳的预处理技术方式.在T=150℃与t=30 min预处理工况下,污泥在厌氧消化后最高可实现52.6%的木质纤维素降解率,主要归功于半纤维素和纤维素的大幅降解.相对未预处理污泥,预处理能有效促进木质纤维素类物质的厌氧消化,从而提高污泥有机质的能源转化率. 相似文献
8.
9.
赤泥是铝土矿提炼氧化铝后排放的强碱性废渣,数量巨大且环境风险大,如何无害化及土壤化处置是赤泥生态修复与治理的关键。该研究通过掺拌不同比例的木质纤维素酸性废渣,并进行复合微生物菌剂添加和覆叶排碱处理,对赤泥的pH、有机质含量及有效水容量进行了比较研究。发现掺拌木质纤维素废渣、添加复合微生物菌剂均能显著降低赤泥pH、增加有机质含量与有效水容量。其中添加复合微生物菌剂且赤泥与木质纤维素废渣质量比为7∶3时,赤泥pH可由11.08降至8.35,有机质含量由6.13 g/kg增至24.92 g/kg,有效水容量由8.80%增至19.17%,已达到一些耐盐碱植物的生长要求。覆叶排碱措施尽管对赤泥pH、有机质含量及有效水容量均无显著影响,但减少了可溶盐碱在赤泥表层的析出。故此,掺拌一定量的木质纤维素废渣并辅之以复合微生物菌剂添加及松叶覆盖等,是一种有效的"以废治废"的赤泥脱碱及改良方法。 相似文献
10.
剩余污泥中木质纤维素稳定并转化能源可行性分析 总被引:1,自引:3,他引:1
剩余污泥中往往含有大量木质纤维素物质,在厌氧消化过程中难以降解,最终被浓缩于熟污泥中,这就是导致污泥有机物稳定并转化能源效率低下的主要原因之一.本文分析了剩余污泥中木质纤维素的含量与来源;阐述了木质纤维素的结构特点以及对其生物降解的关键技术所在;揭示了污泥常规预处理与木质纤维素预处理存在工艺条件不同的相似技术.文章结合两种预处理技术的特点和工艺条件,从原理、技术等角度分析了通过强化剩余污泥预处理而同时达到破解木质纤维素的技术思路.为此,提出了将污泥细胞破碎与木质纤维素破解耦合的观点,以期将污泥中木质纤维素的稳定与能源转化合二为一,从而构建木质纤维素稳定化、能源化与碳减排三位一体的技术策略 相似文献
11.
以高温期堆肥样为菌源,在含0.025 mg·mL-1四环素的培养基内以秸秆作为唯一碳源,经多代驯化筛选到一组能够分解木质纤维素和抗生素的ADC-6复合系.该复合系能够在6 d内分解四环素0.0194 mg,在14 d内使稻秆减重32%.ADC-6纤维素内切酶酶活、半纤维素酶活、总纤维素酶活在第4 d、2 d和2 d达到最大值分别为15.85 U·mL-1、62.97 U·mL-1和15.56 U·mL-1.用变性梯度凝胶电泳检测驯化过程中菌种的动态变化,并用克隆文库对稳定阶段的菌种多样性分析,发现该菌群中含Bacteroidetes、Sphingobacteriales、Bacillaceae、Clostridiales和Proteobacteria等5个属的微生物,其中,Clostridiales对木质纤维素的转化能力较强,很可能是菌群中分解木质纤维素的关键菌,而Bacteroidetes很可能是分解抗生素的关键菌. 相似文献
12.
含纤维素废水生物水解的应用研究 总被引:1,自引:0,他引:1
提取植物或动物纤维所产生的高浓有机废水,含短小纤维、木质素、纤维素、半纤维素、蜡质、果胶及其分解产物(糖、脂肪酸、醇等),较难生物处理,属含纤维素废水。试验研究和生产应用表明,生物水解对含纤维素废水中高分子有机物,可予分解并提高度水可生化性:在常温、PH约9.5时,水解池污泥浓度达6.5~16.0g/L,容积负荷达2.9kgCOD/m^3.d,COD去除率为24—36%,VFA提高3.9—5.1倍,BOD/COD提高12~16%。分析认为:中温、酸性,纤维素、木素含量低时,水解效果应更好。 相似文献
13.
高效纤维素分解菌在蔬菜-花卉秸秆联合好氧堆肥中的应用 总被引:14,自引:0,他引:14
以滇池流域典型的蔬菜废物和花卉秸秆为堆肥原料,以本实验室筛选、保存的17株纤维素降解菌和1株购买的产黄纤维单胞菌(Cellulomonas Flavigena)为复合接种剂,对不同接种条件和控温条件下的联合堆肥中试进行了研究.实验结果表明,在一次发酵的初始阶段,以体积分数0.5%的接种量向堆肥中接种纤维素降解复合菌剂可有效提高发酵过程堆料中纤维素降解菌的种群密度,并使其迅速成为优势菌群,尤其是当堆体处于控温55℃的工况条件时,其菌群密度可保持在3.84×109~1.80×1010CFU/g;在二次发酵的初始阶段,以体积分数1%的接种量接种,可有效提高二次发酵阶段堆温的回升.对堆料中木质素和纤维素含量以及堆肥终产物的粒径分布指标--过筛率的检测表明,接种的复合纤维素降解菌可有效地降解堆料中的木质纤维素,接种处理中纤维素的降解率比不接种处理高23.64%,接种处理堆肥终产物的过筛率(2.0 cm)比不接种处理高18.28%.研究表明,用纤维素降解复合菌剂进行二次接种二次发酵,能够有效地促进蔬菜-花卉秸秆联合好氧堆肥中物料的纤维素组分的降解,达到加快堆肥进程,提高堆肥品质的目的. 相似文献
14.
随着化石资源的日益枯竭及环境污染问题的日益严峻,开发与利用环境友好的可再生资源受到广泛关注。木质生物质微波热解具有反应速率快、易于控制、安全无污染等优点,但是存在产物分布不均和经济价值不高等问题,严重制约了生物质能的全面与高效利用。系统地介绍了木质纤维素组分的结构,详细阐述了木质纤维素各组分的热解机制,并比较了微波热解与传统热解的差异,探讨了微波热解的影响因素以及微波催化热解木质纤维素的产物分布。此外,介绍不同种类催化剂(碳基材料、分子筛、金属氧化物等)在促进生物质微波热解中的作用,可以高效转化木质纤维素,优化微波热解产物的种类分布,并促进选择性生产特定高值化学品,以实现木质纤维素的资源化和高值化利用。最后,对木质纤维素热解未来研究方向和技术发展进行了展望。 相似文献
15.
地聚合物(Geopolymer,简称GP)是一种具有三维立体网状结构的无机聚合物,对重金属有良好的吸附性能.以火山灰掺杂木质纤维素为原料制备了木质纤维素/火山灰基地聚合物,考察了投加量、pH、时间、温度和初始离子浓度等因素对掺杂木质纤维素前后的GP吸附Pb(II)的影响,通过对比说明掺杂对吸附性能的提升作用.结果表明,在55 ℃,pH=5、投加量为0.6 g·L-1、Pb(II)初始浓度为400 mg·L-1时,掺杂木质纤维素得到的GP(简称L-GP)对Pb(II)最大吸附量可达460.83 mg·g-1,远优于仅用火山灰所得的GP的223.21 mg·g-1.两种GP对Pb(II)的吸附均很好地符合二级动力学规律和Langmuir方程,且反应过程都是熵增吸热的过程.通过XRD等分析表明,木质纤维素掺杂火山灰作为原料而制备所得的复合材料保留了GP的结构特点,而且能够利用木质纤维素上丰富的官能团从而提升GP的吸附量,是一种优良高效的吸附剂.本文对利用火山灰和木质纤维素制备高性能GP及其潜在应用具有重要指导意义. 相似文献
16.
木质纤维素分解菌复合系WSC-6分解稻秆过程中的产物及pH动态 总被引:14,自引:4,他引:14
为了探明WSC-6分解稻秆过程中的代谢特性,本试验以稻杆为唯一碳源,50℃静止培养WSC-6,以一次性添加不同量稻秆和多次连续添加的方式,研究了WSC-6分解稻杆的相对分解率、绝对分解量、分解产物及pH变化特性.结果表明,一次性添加1%稻秆时,pH由初始的7.8迅速下降,第3 d降到6.0后逐渐回升,6 d后稳定在8.0左右,在此过程中DO值保持在0.01~0.12 mg·L-1微好氧条件.以GC-MS法在稻杆分解过程中检测到乙醇、乙酸、乳酸、甘油等10种以上有机物,其中乳酸的含量最高,为7.381 g·L-1.在90 d的实验中,一次性添加不同量稻秆时,随着稻秆量的增加,pH下降得快而低,且回升时间拖后,当稻秆量为5%时pH下降到5.0后不再回升.在多次连续添加稻秆的实验中,隔12d和15d添加的处理pH重复下降和回升的规律性变化,分解活性保持旺盛.90 d后隔15 d添加的处理相对分解率最高,为86.7%;绝对分解量以隔6 d添加的处理最高,为32.4 g.pH变化规律能够反映WSC-6对木质纤维素的分解进程及分解活性. 相似文献
17.
快速木质纤维素分解菌复合系MC1对秸秆的分解能力及稳定性 总被引:17,自引:2,他引:17
以天然水稻秸秆为材料研究了快速降解木质纤维素的细菌复合系MC1对木质纤维素的分解能力;并在不同条件保藏、高温处理以及利用变性梯度胶电泳(DGGE)技术研究了复合系的稳定性.结果表明,复合系MC1在50℃液体静止培养条件下8~10d,把培养液2%干重的水稻秸秆完全分解溶化;经过9d的培养,水稻秸秆的总干重减少81%,其中纤维素减少99%,半纤维素减少74%,木质素减少51%.连续继代培养4a、常温干燥保存4a、-20℃冷冻藏4a、培养液直接在室温和4℃保存1a、90℃处理30min仍具旺盛的分解能力并稳定传代.平板培养基培养证明MC1全部由细菌组成,16SrDNA变性梯度胶电泳(DGGE)检测结果,在6个月内主要条带几乎没有变化,说明MC1的菌种组成相当稳定.MC1对纤维素的分解利用具重要前景. 相似文献
18.
分解纤维素的高温真菌筛选及其对烟杆的降解效果 总被引:5,自引:0,他引:5
为研制促进烟杆堆肥的微生物菌剂,进行了分解纤维素的高温真菌筛选.结果表明,从不同原料腐熟堆肥中筛选到4株降解纤维素的高温真菌,它们均能在以羧甲基纤维素钠(CMC-Na)或烟杆粉末为唯一碳源的培养基上生长.菌株在2~5d内可长满CMC-Na-刚果红平板和烟杆粉末培养基.菌株摇瓶培养时2d可达到产酶高峰,酶活(CMCase)超过10U.菌株对烟杆的降解效果较好,7d内的降解率最高可达42.2%,对烟杆中的纤维素、半纤维素和木质素的分解率分别可达52.7%、47.9%和37.6%. 相似文献
19.
高效稳定纤维素分解混合菌群的筛选及分解特性研究 总被引:5,自引:0,他引:5
以高纤维素素含量的土壤为筛选源,利用定向筛选技术,经过多代淘汰,最终筛选出一组木质纤维素分解混合菌群P-C。混合菌群的生长曲线没有明显的分界线,在培养4至5天时,出现了短暂的平稳期,在培养第7天时出现峰值,此时混合菌群的纤维素酶活最高。以天然纤维素为产酶碳源时,混合菌群纤维素酶活明显高于以人工纤维素为产酶碳源时的酶活,以秸秆为碳源时的纤维素酶活是以滤纸为碳源时的1.5倍。混合菌群纤维素酶的最适pH是6,最适酶促反应温度是45℃,但在35℃-40℃时也具有较高酶活。pH=6,糖化48 h时,发酵液糖浓度最高。 相似文献
20.
以高温厌氧细菌热纤维梭菌(Clostridium thermocellum LQRI)和嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus X514和Thermoanaerobacter pseudoethanolicus39E)为对象,以纤维素为微生物利用的底物,分析了LQRI纯培养和LQRI+Thermoanaerobacter混合培养对纤维素降解、酒精生产及终产物分布的影响.结果表明,LQRI+Thermoanaerobacter混合培养的酒精生产能力和纤维素降解率明显高于LQRI纯培养.在混合培养体系中,LQRI+X514的酒精生产能力明显高于LQRI+39E.培养基中无外源酵母粉条件下,LQRI纯培养酒精最高浓度约为11.5mmol/L,LQRI+X514和LQRI+39E混合培养最高酒精浓度分别约为71mmol/L和36.5mmol/L,相同的底物纤维素浓度条件LQRI+X514和LQRI+39E混合培养酒精浓度分别约为LQRI纯培养的5~11倍和3~5倍,纤维素降解率分别都约为LQRI纯培养的1.5~5.0倍;培养基中0.6%外源酵母粉存在条件下,LQRI纯培养酒精最高浓度约为12.9mmol/L,LQRI+X514和LQRI+39E混合培养最高酒精浓度分别约为263.5mmol/L和143.5mmol/L,相同的底物纤维素浓度条件LQRI+X514和LQRI+39E混合培养酒精浓度分别约为LQRI纯培养的8~22倍和8~12倍,纤维素降解率均约为LQRI纯培养的1.1倍.在5%Solka Floc为底物和0.6%外源酵母粉的条件下,LQRI+X514混合培养酒精浓度最高可达到263.5mmol/L,相当于1.2%(质量浓度)的酒精,LQRI+39E约为143mmol/L. 相似文献