首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
乌鲁木齐市区PM2.5污染特征及其溯源与追踪分析   总被引:1,自引:0,他引:1  
重点研究乌鲁木齐市大气中PM2.5的污染特征,分析其质量变化浓度与各种气象影响因素的相关性.利用美国空气资源实验室的HYSPLIT模型对颗粒物进行备季节代表月份的溯源和追踪分析,为正确认识乌鲁木齐市区大气PM2.5污染状况提供重要基础数据,为以后的对比研究和制定相应的污染控制措施提供参考依据。结果表明:(1)PM2.5质量浓度的最高值出现在1月,受采暖期的影响,冬季PM2.5质量浓度全年最高。(2)PM2.5的质量浓度与温度呈负相关性,与气压的呈正相关性;在无降水的前提下,PM2.5的质量浓度与相对湿度呈正相关。(3)春、夏、秋三季PM2.5来源主要是阿拉山口、阿勒泰北部及南疆,冬季则主要来自于南疆。到达乌鲁木齐的颗粒物主要向河西走廊及阿拉山口方向移动。  相似文献   

2.
利用巴中市城区一个自然年(2016年3月1日~2017年2月28日)的空气质量数据,分析了巴中市城区PM_(2.5)的污染特征和时空变化规律。结果表明,PM_(2.5)日均浓度对数值接近正态分布特征,PM_(2.5)与其他主要大气污染物都具有显著的相关关系。CO、NO_2是主要的相关因素,与PM_(2.5)的相关系数都高达0.7以上。PM_(2.5)浓度表现为冬季秋季春季夏季,这与首要污染物是PM_(2.5)的天数占比以及PM_(2.5)与PM_(10)相关系数的季节变化一致,反映了PM_(2.5)呈现出以冬季污染最重,春、秋季污染中等,夏季污染最小的季节特征。PM_(2.5)与PM10的浓度比值表现为冬季秋季夏季春季。各个站点的PM_(2.5)变化趋势一致,相互之间浓度差异小且比较均衡,巴中中学站点的PM_(2.5)浓度无论在任何季节都高于其他站点,苏山坪站点在冬季的PM_(2.5)浓度明显低于其他站点,表明PM_(2.5)污染具有明显的区域性特征,与人类活动强度相关的局地污染对PM_(2.5)污染具有一定影响。  相似文献   

3.
以成都市2020年的日均空气质量数据和地面气象数据为基础,对PM2.5浓度的年际变化和季节分布进行分析,得出成都市2020年较2019年相比PM2.5平均浓度下降5.94μg/a·m3,年度最低值为4μg/m3;PM2.5随季节变化规律为:冬高夏低,冬季波动大,夏季稳定,平均浓度冬季最高,秋季次之,夏季最低,并且冬季有...  相似文献   

4.
以长沙市10个城市环境空气自动监测站点2013年的历史监测数据为基础,分析了PM2.5质量浓度的周期性变化规律,并采用非参数分析(Pearson相关性)法,研究了气象因素对长沙市PM2.5质量浓度周期性变化的影响。结果表明,PM2.5日均质量浓度在不同季节的绝对值和变化周期都相差很大。总体上,PM2.5在冬季的浓度高于夏季;PM2.5质量浓度的变化周期在3~8d。在2013年4个典型月份内,温度和风速与PM2.5质量浓度负相关,而湿度和气压与PM2.5质量浓度正相关,相关系数分别为-0.573、-0.395、0.519和0.440。PM2.5周期性变化与区域内大气环境容量相关,而大风、降雨等强对流天气是终结PM2.5变化周期的主要环境因素。  相似文献   

5.
庄婉婉 《四川环境》2020,39(2):81-87
为了解松江区PM 2.5与PM 10浓度变化特征,选取2014年1月1日~2019年2月28日松江区3个环境空气自动监测市控点质控后的小时平均值,进行日、月、季节和年际变化的讨论分析。结果表明:2014~2018年松江区的PM 2.5与PM 10年均浓度分别为51、61μg/m 3,呈整体下降趋势;冬春季PM 2.5与PM 10浓度较高、秋季次之、夏季低;2014~2018年PM 2.5与PM 10浓度月变化趋势基本相同,整体呈现4~6月逐渐下降,10~12月逐渐上升的规律;PM 2.5与PM 10浓度各季节及全年的日变化均呈双峰型;PM 2.5与PM 10的相关系数为0.87,四季系数为r冬季(0.91)>r夏季(0.90)>r秋季(0.88)>r春季(0.72);PM 2.5/PM 10的平均值为0.83,大气颗粒物PM 2.5的贡献率非常高。  相似文献   

6.
本研究分析PM_(2.5)中有机碳和元素碳的质量浓度变化特征,对昌吉市典型区域昌吉州环保局2016-01月至2017-01月采集的大气细颗粒物(PM_(2.5))样品,利用美国(Sunset Lab Inc)大气气溶胶元素碳与有机碳仪分析了其中的有机碳(OC)和元素碳(EC)浓度水平、污染特征及其可能来源,以期为深入了解昌吉市颗粒物污染现状,制定大气污染防治对策提供依据。结果表明:昌吉市OC和EC的质量浓度范围分别为0.13~46.71μg/m3和0.05~8.25μg/m~3,5月份质量浓度最小,EC的质量浓度月分布无明显变化,OC和EC最大浓度均出现在2月。OC的质量浓度季节变化特征呈现冬季秋季夏季春季;EC的质量浓度季节变化特征呈现冬季秋季夏季春季。在不同的季节,OC的浓度变化比较明显,EC排放相对稳定。对各季节OC、EC相关性分析中可以看出,昌吉市OC、EC相关性表现为夏季最强,春秋次之,表明昌吉市夏、春、秋OC、EC具有相似来源或大气扩散过程,主要来源于交通源机动车尾气的排放;冬季相关性较低,说明OC和EC来源复杂,冬季进入采暖期,采暖期燃煤燃气增加,排放量增大,排放源结构复杂,大气污染可能受多种源共同影响。  相似文献   

7.
为深入了解阿克达拉PM2.5颗粒物污染,利用阿克达拉国家大气本底站颗粒物监测仪器GRIMM180观测的2010~2019年PM2.5数浓度及台站的常规气象观测资料,用z-score法对PM2.5数据标准化进行时间变化趋势分析,利用SPSS进行Pearson系数相关分析,能够客观反映出颗粒物浓度与气象要素间的共变趋势程度。结果表明:(1)10年中PM2.5浓度整体上升7.15%。季节变化表现为冬季>春季>秋季>夏季的特征。秋季为明显右偏态分布其余季节对称分布,且冬季的变化性最大。月变化周期为13个月,呈现出“U”形起伏的变化规律。日变化呈现单峰的型式,且采暖期为非采暖期浓度2倍,呈现白天堆积晚上扩散的周期。(2)PM2.5与风速、相对湿度和日照时长相关性最好,且在冬季表现最为显著。PM2.5最高浓度风向为正南,阿克达拉主要污染物成分主要来自西北、偏西方向。风速为10m/s时为PM2.5浓度明显转折点。夏季PM...  相似文献   

8.
利用2014—2015年合肥市颗粒物浓度及气象观测资料,对合肥市颗粒物浓度时空分布特征及其与气象要素的关系进行了分析。结果表明:2015年,合肥市PM10、PM2.5日均浓度均呈现"一增一减"趋势;PM10与PM2.5日均浓度分布季节差异明显,呈现"V"型特征;在空间分布上,PM2.5的浓度主城区高于周边地区,PM10浓度北部整体高于南部;PM10与PM2.5浓度与降水量、相对湿度、风速和风向均有一定相关性。  相似文献   

9.
近年来,城市空气污染日益严重,已成为公众广泛关注的环境问题之一。柳州是中国西部的工业重镇、广西有名的工业城市,位列国家划定的113个大气污染防治重点城市之中,是广西第一个开展PM2.5监测的城市。本研究于2009—2014年连续6年对柳州市大气主要污染物SO2、NO2、PM10和PM2.5的浓度进行在线观测,获得了污染物的长期时间和空间分布特征。结果显示,SO2浓度呈逐年下降趋势,并于2011年达标之后显著下降,2014年相比2009年下降了50.0%;NO2浓度一直在低于标准以下波动(24.6~35.1μg/m3);PM10浓度呈逐年增长趋势,并从2011年开始超标,2014年相对于2009年增长了69.3%。各污染物浓度都具有显著的季节变化:冬季秋季春季夏季。SO2、NO2、PM10和PM2.5的浓度冬季相比夏季分别提高82.9%、56.3%、66.9%和133.6%。冬季SO2和秋冬季PM10超标,PM2.5除7月外全线超标。PM2.5/PM10的比值冬季也高于夏季,表明冬季更易富集细颗粒。各污染物浓度也表现出不同的空间分布。九中各污染物的浓度都最高,可能与其离柳州钢铁公司距离较近有关。SO2除九中外,其他站点均达标。NO2全部达标。PM10市监测站和九中超标。PM2.5所有站点超标严重。本研究结果表明,柳州市煤烟型污染得到有效控制,但颗粒物污染,尤其是细颗粒物污染日益严重。  相似文献   

10.
大气细粒子(PM2.5)监测技术进展   总被引:4,自引:0,他引:4  
大气细粒子(PM2.5)的污染对人和生态环境等影响巨大,迫切需要进行PM2.5质量浓度的监测;本文介绍了PM2.5国内外监测研究进展、监测网络应用情况以及监测技术;重点介绍了几种先进的技术:β射线法、振荡天平法和光散射法,并详细描述了各种监测设备的原理及结构,提出最好采用PM2.5在线监测仪进行日常监测。  相似文献   

11.
为了评估分析枣庄市不同来源污染物排放强度削减与大气环境质量变化之间的关系,使用统计方法和正定矩阵因子分解法对枣庄市2020年第一季度大气污染变化特征和污染来源进行了解析,探究了枣庄市大气固体悬浮微粒浓度变化影响机制.结果表明:2020年第一季度PM2.5、PM10、N02、S02浓度较2019年同期显著下降,但枣庄市采...  相似文献   

12.
利用车载环境空气质量监测系统对长沙市城区典型交通路口的近地面空气质量进行了实时监测。结果表明,在监测时段(14∶00~20∶00)内,该监测点环境空气中PM10的小时质量浓度范围在0.097~0.222mg/m3之间,平均值0.163mg/m3;PM2.5的小时质量浓度范围在0.050~0.158mg/m3之间,平均值0.103mg/m3。PM2.5/PM10比值在48.1%~76.6%之间,平均值62.4%。PM10与PM2.5质量浓度在星期一相对较低,星期二有所升高,星期三至周末总体上保持基本稳定。在监测时段PM10与PM2.5小时质量浓度呈现先降后升的变化规律,即14∶00~15∶00,PM10与PM2.5质量浓度相对较高,16∶00左右降至最低,从17∶00开始逐渐升高,20∶00达到峰值。PM10和PM2.5的质量浓度变化与车流量和车速密切相关,温度、相对湿度和风速等气象因素对PM10和PM2.5质量浓度的变化影响也较显著。  相似文献   

13.
于2009~2010年典型月份采集成都市区大气PM_(2.5) 样品,采用IMPROVE-热光反射法对样品中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)进行分析,探讨OC和EC浓度水平、来源及二次有机碳分布特征。结果表明,成都市年均OC和EC质量浓度分别为(22.6±10.2)μg/m3和(9.0±5.4)μg/m3,与国内外其他城市相比,污染严重;OC和EC的质量浓度呈现明显季度差异,均为秋冬季春夏季;相关性分析表明,OC和EC秋冬季节相关性较好,表明其来源相近,春夏季节相关性差,表明其来源较为复杂;OC/EC值2,且估算出二次有机碳(secondary organic carbon,SOC)年均值为(8.9±4.6)μg/m~3,占OC质量浓度的38.5%,表明二次污染严重。  相似文献   

14.
利用2016年1月至12月潍坊城区典型区域的PM_(10)、PM_(2.5)浓度的连续观测数据,研究了PM_(10)、PM_(2.5)浓度的变化特征及其与气象因素的关系。结果表明,潍坊城区颗粒物污染较为严重,PM_(10)超标率为7.59%、PM_(2.5)超标率为33.61%。PM_(10)和PM_(2.5)质量浓度均存在明显的季节变化和月变化规律,表现为夏季月份较低,而冬季月份较高。PM_(2.5)/PM_(10)比值的平均值为0.526,该比值也呈现一定季节变化,冬夏两季较高,春秋两季较低。PM_(10)和PM_(2.5)与气温均呈现一定的负相关性,PM_(10)还与湿度呈现负相关关系。  相似文献   

15.
2013—2018年大连市环境空气质量明显改善.大连市环境空气中PM2.5污染特征分析表明,PM2.5浓度在冬季采暖期较高,夏季非采暖期浓度较低,具有早晚双峰的日变化特征.2018年各区市县PM2.5年均值均下降.除普兰店区和瓦房店市PM2.5年均值超标,其他区市县均达标.大连市区PM2.5年均值仅高于长海县,低于其他...  相似文献   

16.
对克拉玛依市2014-2015年PM_(2.5)质量浓度进行整理统计,通过Arc GIS空间插值和EXCEL数理统计分析得出PM_(2.5)的质量浓度变化特征。结果表明,PM_(2.5)各小时浓度均低于国家二级标准,整体空气质量为良;PM_(2.5)季节浓度呈现冬季高,春夏低的规律,其中2月份浓度最高,为63.7μg/m3,4月份最低为23.6μg/m3;各监测站PM_(2.5)浓度受盛行风影响自西北向东南方向递增,依次为南林小区、长征新村、白碱滩区、独山子区、乌尔禾区商贸区;PM_(2.5)与PM10全年平均比值为0.53,整体空气污染较重。此外,PM_(2.5)与NO_2和SO_2均呈正相关,与O_3呈负相关性,说明汽车尾气和化石燃料排放是PM_(2.5)的主要来源。  相似文献   

17.
本文利用2015~2018年衡阳市城区空气质量监测数据,分析环境空气污染特征及变化趋势。研究结果表明:2015~2018年衡阳市城区环境空气以PM2.5、PM10、O3污染为主,其中PM2.5和PM10年均值浓度呈下降趋势,O3年均值浓度呈不规则波动变化;年内时空变化上,O3呈现夏、秋季浓度高和冬、春季浓度低的特点,PM2.5和PM10呈现出夏季浓度低、冬季浓度高的特点。针对衡阳市空气污染物特征,提出了衡阳市城区空气质量改善的对策建议。  相似文献   

18.
为了解泸州市主城区颗粒物污染变化特征及成因,选取2019年3月至2020年2月空气自动监测数据,运用Origin 2017等技术手段对PM2.5与PM10的时间变化特征、污染来源方向以及污染物之间的相关性进行了分析.结果表明:PM2.5与PM10在不同季节的变化趋势均具有较好的一致性,不同站点污染物相关性特征明显.分析...  相似文献   

19.
根据2013年1月1日至2月15日大连市环境监测中心PM2.5监测数据和大连市气象局风向、风速、降水量等资料,研究了降雪、降雨、风等气象因素对大气中PM2.5的去除效应。结果表明,大连市冬季采暖期PM2.5污染较重,PM2.5浓度受气象因素影响较明显。降雪、降雨、风三种气象因素对大气中PM2.5均有明显的去除效果,因去除机理不同,各气象因素对PM2.5的去除能力大小依次为风、降雨、降雪,去除效率分别为61.6%、46.0%、34.5%。  相似文献   

20.
为探究重污染天气过程中颗粒物数浓度水平和分布特征,利用电迁移粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)等,对成都市2020年12月21~28日的大气颗粒物(12.2nm~20μm)数浓度谱进行观测分析。结果表明,污染期间颗粒物数浓度主要集中在积聚模态粒径段,数浓度谱呈三峰分布,主峰值出现在723nm左右,积聚模态颗粒物数浓度的增加是导致此次污染过程颗粒物数浓度快速升高的主要原因。各模态数浓度日变化特征明显,凝结核模态呈单峰分布,浓度高值出现在午间;爱根核模态与积聚模态呈双峰分布,浓度高值分别出现在午间和晚间。受站点周边交通源和生活源影响,颗粒物数浓度高值区主要分布在西北和东南风向1.0~1.5m/s风速下,相对湿度和能见度与积聚模态颗粒物数浓度相关性最为显著。因此,降低积聚模态数浓度有助于缓解颗粒物污染并提高大气能见度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号