首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
四环素类抗生素污染畜禽粪便的厌氧消化特征   总被引:3,自引:4,他引:3  
应用间歇试验研究了外源添加四环素(TC)和金霉素(CTC)的猪粪中温(35℃)厌氧消化特征及抗生素的降解过程.结果表明,猪粪厌氧水解酸化过程中产生的挥发性脂肪酸以丙酸为主,乙酸次之;相比于CTC添加组,TC+CTC混合添加组对易降解有机物的水解酸化有明显的抑制作用;添加TC、CTC和TC+CTC组在45 d的消化期内累积产甲烷量分别为386.4、406.0和412.1 mL,与不添加TC和CTC的对照组(464.6 mL)相比,分别减少了16.8%、12.6%、11.3%.四环素和金霉素的降解过程符合一级反应动力学方程;四环素降解的半衰期为14~18 d,金霉素为10 d.经过45 d厌氧消化处理后,四环素的降解率达88.6%~91.6%,金霉素达97.7%~98.2%.因此,畜禽粪便厌氧消化处理不仅能回收生物质能源,还能降解残留的四环素类抗生素,有效地降低抗生素污染产生的生态风险.  相似文献   

2.
广西会仙岩溶湿地典型抗生素污染特征及生态风险评估   总被引:7,自引:0,他引:7  
为确定会仙岩溶湿地不同介质中抗生素的污染特征及来源,利用液相色谱串联质谱联用仪分析了磺胺类(SAs)、氟喹诺酮类(FQs)和四环素类(TCs)三大类20种抗生素的含量.结果表明,研究区内水土介质监测的抗生素中共检出12种,检出浓度范围为n.d~106 ng·L~(-1),其中,甲氧苄氨嘧啶(TMP)的浓度最高.各环境介质中,以养殖用水和地表河水中检出的抗生素种类相对较多,分别为10种和8种,溶潭水和土壤中则检出的抗生素种类较少.因子分析结果显示,会仙湿地水体中的典型抗生素来源可归为两类,一类以受外源污染为主,从而导致地表河水中磺胺氯达嗪(SCP)、磺胺嘧啶(SDZ)、磺胺甲恶唑(SMZ)、诺氟沙星(NOR)、氧氟沙星(OFL)检出浓度较高,一类受湿地内养殖污染,从而造成水土介质中磺胺二甲基嘧啶(SMD)、甲氧苄氨嘧啶(TMP)和金霉素(CTC)检出.水体中检出的抗生素主要受溶解氧(DO)影响,此外,甲氧苄氨嘧啶(TMP)、恩诺沙星(ENR)和强力霉素(DOX)与NH~+_4存在一定的协同污染关系.风险评估结果表明,恩诺沙星(ENR)处于高风险的范围内,磺胺甲恶唑(SMZ)、诺氟沙星(NOR)和氧氟沙星(OFL)处于中等风险,中等风险的抗生素主要集中在地表河水中,高风险抗生素则在养殖用水中.整体来看,研究区水体中抗生素存在一定的风险.因此,针对这一现象应减少存在生态风险抗生素的使用,并对有潜在风险的抗生素加以防范.  相似文献   

3.
氟磺隆水解动力学研究   总被引:1,自引:0,他引:1  
采用试验室内模拟试验的方法,研究不同pH的缓冲溶液和不同自然水体对氟磺隆水解的影响。实验结果表明,不同pH缓冲溶液和不同自然水体对氟磺隆水解速率均有不同程度的影响。在碱性条件下氟磺隆的水解速率最快,半衰期为0.2 d,酸性条件下次之,半衰期为6.0 d,在中性条件下水解较慢,半衰期为15.7 d,而在不同自然水体中氟磺隆的降解速率为:伊通河水稻田水青湖水蒸馏水。  相似文献   

4.
研究了环境因子对氟苯尼考在沉积物中降解的影响.结果表明,氟苯尼考在沉积物中的降解规律可以用一级动力学方程来描述;在10~30℃温度范围内,温度升高有利于其在沉积物中的降解,当温度为40℃时,其降解速率减小;微生物和有机质状况对氟苯尼考降解的影响存在显著性差异(在未处理沉积物中的降解半衰期为1.70d,而灭菌和去除有机质后的半衰期分别为6.73,11.64d);氧气状况对氟苯尼考降解影响不显著,厌氧条件下降解速率较好氧条件下稍快.  相似文献   

5.
利用超高效液相色谱串联质谱法(HPLC-MS)对白洋淀水体和沉积物中喹诺酮类(Quinolones,QNs)抗生素进行检测,并研究其生态风险空间分异特征,探究其与环境因子的相关性.结果表明:①白洋淀氧氟沙星(Ofloxacin,OFL)和氟甲喹(Flumequine,FLU)的检出率最高(100%),其次为马波沙星(Marbofloxacin,MAR)和氟罗沙星(Fleroxacin,FLE)(≥60%),其余QNs的检出率较低(≤35%);②白洋淀水体和沉积物中QNs抗生素浓度范围分别为153.39~1550.07 ng·L~(-1)和10.22~381.85 ng·g~(-1),水体中QNs在S1处浓度最高,S4处最低,沉积物中QNs在S2处浓度最高;③相关性分析结果表明,水体透明度(Secchi depth,SD)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)、硝氮(Nitrate nitrogen,NO~-_3-N)、沉积物氨氮(Ammonia nitrogen,NH_3-Ns)和沉积物总氮(TNs)与QNs相关性显著,其中,SD、TP和NH_3-Ns与部分QNs(MAR、恩诺沙星(Enrofloxacin,ENR)和FLE)显著相关(p0.01),表明生活污水和养殖废水对QNs的贡献较大;④生态风险评价结果表明,白洋淀QNs总体处于中低风险水平,其中,ENR处于中高风险水平,其余QNs处于低风险水平;就空间分布而言,除S1和S9为高风险区外,其余各点为中低风险区.  相似文献   

6.
模拟水流环境中抗生素的行为特征与归宿   总被引:1,自引:1,他引:0  
徐维海  张干  邹世春  颜文  杨琛 《环境科学研究》2009,22(10):1213-1217
利用香港理工大学水动力学实验室的大型流动水槽(FLUME)模拟动态水流环境,研究了4种不同类型的抗生素(红霉素、罗红霉素、氧氟沙星和磺胺甲唑)在动态和静态水体与沉积物之间的交换与配分,初步探明了抗生素类药物在河流环境中的行为及归宿. 结果显示:在水流环境下,抗生素被迅速吸附到水体中悬浮的颗粒物和表层沉积物中,并可通过剪切力作用被吸附到次表层沉积物中. 而在静止水体中,仅有少量的抗生素被吸附到表层沉积物中. 氧氟沙星显示出强的吸附特性(DT50≥22 d),具有高的吸附系数(Kd),而磺胺甲唑的吸附能力较弱. 在FLUME系统中,氧氟沙星具有适中的持久性,其他3种药物显示出弱的持久性;而在静止系统中,4种药物均显示出适中的持久性. 抗生素在水流环境中的持久性要低于静止环境. 颗粒物的吸附与自身的代谢是抗生素在水流环境中的主要归宿.   相似文献   

7.
吡草醚水解动力学的研究   总被引:1,自引:0,他引:1  
研究了吡草醚在不同pH和温度条件下的降解动力学情况,以及在三种生态水样和土悬液中的水解情况。结果表明,吡草醚在酸性水环境中比较稳定,在中性和碱性环境中易降解;水解反应速率随反应温度的升高而增大;吡草醚在三种生态水中的降解速率较快,降解半衰期分别为:水库水4.56d,河水3.96d,池塘水1.35d;吡草醚在土悬液中降解较快,这与其碱性条件和含量较高的可溶性碳有关。  相似文献   

8.
研究了吡草醚在不同pH和温度条件下的降解动力学情况,以及在三种生态水样和土悬液中的水解情况。结果表明,吡草醚在酸性水环境中比较稳定,在中性和碱性环境中易降解;水解反应速率随反应温度的升高而增大;吡草醚在三种生态水中的降解速率较快,降解半衰期分别为:水库水4.56d,河水3.96d,池塘水1.35d;吡草醚在土悬液中降解较快,这与其碱性条件和含量较高的可溶性碳有关。  相似文献   

9.
湖泊沉积物既是氮磷等营养物质的储存库,也是水体营养盐的二次污染源,可以缓冲水体氮磷浓度变化,进而影响水体营养盐的生物可利用性和藻类生长.本文以太湖梅梁湾为研究对象,通过模拟实验研究沉积物参与下外源氮磷脉冲式输入对水体营养盐浓度和藻类生长的影响,并阐明氮磷在沉积物、水和藻类间的迁移转化及再分配过程.结果表明,当以0.30 mg·(L·d)~(-1)的速率脉冲式输入氮时,实验组(有沉积物)水体氮浓度远低于相应的对照组(无沉积物),沉积物参与下水体氮约以0.144~0.156 mg·(L·d)~(-1)的速率脱除,根据单位面积估算水体脱氮速率约为40.793~44.193 mg·(m~2·d)~(-1),脱氮量约占外源氮的48%~52%;而相应对照组水体约以0.021~0.039 mg·(L·d)~(-1)的速率脱氮,脱氮量仅占外源氮的7%~13%,可见沉积物-水界面作为浅水湖泊反硝化等脱氮过程的主要场所,对减轻湖泊氮负荷具有重要贡献.当以0.015 mg·(L·d)~(-1)的速率脉冲式输入磷时,沉积物表现出明显的"汇"效应,约52%~58%外源磷以2.210~2.422 mg·(m~2·d)~(-1)的速率汇入沉积物,其余约23%~26%外源磷被藻类吸收,约20%~22%则以溶解态存在水体,可见沉积物的参与能有效地缓冲水体磷浓度对外源磷的响应.无外源输入时,沉积物充当磷源,以约0.310~0.468 mg·(m~2·d)~(-1)的速率释放磷供给藻类生长.薄膜梯度扩散技术(ZrO-Chelex DGT)原位高分辨分析显示,沉积物间隙水中有效态磷浓度远高于上覆水,并与二价铁显著相关,表明受铁结合态磷的影响,沉积物-水界面氧化还原状况发生改变会造成内源磷的大量释放.总的说来,在外源得到有效控制时,沉积物中的磷可以缓慢释放进入上覆水中并供给藻类生长,延滞水体对外源控制的响应.因此,在湖泊蓝藻水华治理时,氮磷协调治理可以起到更快的治理效果.  相似文献   

10.
沉积物-水体界面处分子扩散是污染物的一个重要地球化学过程,也是判断沉积物是否为上层水体中污染物汇或源的主要依据.本研究利用低密度聚乙烯膜(LDPE)为吸附相的原位被动采样器,同步确定了巢湖西半湖南淝河入湖口处不同深度的上层水体和沉积物孔隙水中13种多环芳烃(PAHs)浓度,并计算了它们在沉积物-水体界面的分子扩散通量.结果表明,3种性能参考化合物(PRCs)在上层水体中的解析速率较沉积物孔隙水中大,相应地,水体中LDPE膜对PAHs的吸附速率高于沉积物孔隙水.水体中13种PAHs总浓度(130~250 ng·L~(-1))低于沉积物孔隙水(180~253 ng·L~(-1)),且均以低环PAHs为主.2~3环PAHs浓度在上层水体中无明显的垂直变化,但4~6环PAHs浓度呈现随深度增加而降低的趋势.沉积物孔隙水中PAHs浓度的垂直变化规律反映了历史强排放过程.研究区域PAHs在沉积物-水体界面的交换通量变化范围为-384~1445 ng·m~(-2)·d~(-1),除Flu和Pyr外,其它PAHs均从沉积物向水体释放,反映了底部沉积物是上层水体中PAHs的重要二次污染源.  相似文献   

11.
以草海湖区表层沉积物为研究对象,采用Hupfer改进后的化学连续提取法分析20个采样点沉积物中磷形态特征,通过不同磷吸附释放风险指数评估草海的潜在生态风险,并探讨影响磷形态和吸附释放的因素.结果表明,草海湖区表层沉积物总磷(TP)含量为780.95~1229.42mg·kg-1,存在轻度污染;磷形态含量分布表现为NaOH-NRP>Res-P>HCl-P>BD-P>NaOH-SRP>NH4Cl-P,TP与HCl-P、BD-P和NaOH-NRP均呈显著正相关(p<0.001).草海沉积物生物有效磷(BAP)含量为486.71~812.86 mg·kg-1,占TP的59.18%~69.38%,内源磷负荷相对较大.沉积物磷吸附释放相关指数的变化范围分别为:磷吸附平衡浓度(EPC0):0.001~0.839 mg·L-1(明显高于上覆水SRP);磷吸附指数(PSI):35.47~159.40(mg·L)·(100 g·μmol)-1  相似文献   

12.
沉积物-水界面氮的源解析和硝化反硝化   总被引:8,自引:6,他引:2  
掌握沉积物-水界面氮的循环过程,对有效控制地表水氮污染具有关键的作用.通过采集西湖不同季节的柱状芯样,利用氮、氧同位素技术及稳定同位素源解析模型(stable isotope analysis in R,SIAR)并结合乙炔抑制法研究沉积物-水界面氮的来源及迁移转化.结果表明,硝酸盐(NO_3~-)和氨氮(NH_4~+)在沉积物-水界面均存在浓度梯度,NO_3~-自底层水向间隙水扩散,是为沉积物累积;NH_4~+自间隙水向底层水扩散,是为沉积物释放.西湖底层水硝化作用明显,硝酸盐来源包括生活污水(粪肥)、土壤氮、化肥和降雨,生活污水(粪肥)是主要来源,其在夏季贡献率高达60.8%.间隙水中特别高的δ15N值反映西湖沉积物-水界面存在强烈的反硝化作用.西湖沉积物-水界面硝化速率和反硝化速率的平均值分别为2.85 mmol·(m~2·d)~(-1)和23.51μmol·(m~2·d)~(-1),沉积物-水界面在水体氮素去除过程中作用显著.硝化速率和反硝化速率时空变化显著.温度和溶解氧是影响西湖沉积物-水界面氮迁移转化的主要因素.  相似文献   

13.
白薇扬  张成  唐振亚  赵铮  王定勇 《环境科学》2015,36(10):3649-3661
分别于2013年9月至2014年7月,在三峡库区长寿湖水库设置5个采样点,分季节、分层次对水样和沉积物间隙水进行了采集和分析,考察了水库水体和沉积物间隙水不同形态汞浓度及垂向分布特征,并研究了沉积物中汞向上覆水的扩散通量.结果表明,长寿湖水库水体总汞浓度平均值为(14.77±12.24)ng·L-1,总甲基汞浓度平均值为(0.41±0.47)ng·L-1.夏秋季采样点溶解态甲基汞浓度在表层下4~8 m出现峰值,随之其值降低近湖底部再次跃增.颗粒态甲基汞浓度峰值出现在表层下8~20 m而非在沉积物-水体界面处,主要与上层水体颗粒物吸附甲基汞的沉降有关.长寿湖水库垂直剖面间隙水甲基汞峰值出现在表层下16 cm和28 cm,可能硫酸盐还原细菌活动扩展到更深的区域,从而导致了沉积物深处甲基化率的提高.间隙水溶解态甲基汞在秋季和夏季向上覆水体扩散通量分别为28.2 ng·(m2·d)-1和30.0 ng·(m2·d)-1,远高于冬季3.8ng·(m2·d)-1,这与夏秋两季水温较高有关.夏季、春季水体DMe Hg浓度与DO相关关系(r=-0.482**,P0.05;r=-0.339*,P0.01),秋季和冬季不具有相关性.  相似文献   

14.
新农药硫肟醚在土壤中的降解   总被引:5,自引:0,他引:5       下载免费PDF全文
在实验室条件下对新农药硫肟醚[o-(3-苯氧苄基)-2-甲硫基-1-(4-氯苯基)丙基酮肟醚]在不同地区土壤中的降解动态进行了研究.结果表明,硫肟醚在土壤中的降解遵循一级动力学方程.硫肟醚在非灭菌与灭菌长沙粉砂质黏土中的降解速率常数(k)分别为8.106×10-3和1.630×10-3,半衰期分别为85.5d和425.2d,微生物对硫肟醚在土壤中的降解具有显著的影响.硫肟醚在3种土壤中的降解速率大小依次为湖南永州重黏土>甘肃天水黏土>辽宁沈阳粉砂质黏土,其降解半衰期分别为46.1,63.8,70.0d,降解速率常数分别为1.503×10-2,1.087×10-2,9.904×10-3.根据国内农药在土壤中的残留期划分标准,硫肟醚属于较易降解类农药.  相似文献   

15.
以珠江流域北江水体-沉积物中重金属镉综合沉降行为作为研究对象。文章通过总结前人研究成果,综合分析认为沉积物中镉的吸附-释放主要影响因素为沉积物特性、水体文水动力条件和水体物理化学性质变化;对重金属影响因素研究可知沉积物对重金属具有决定性作用,而镉在水体中的综合沉降系数的意义则区别于其它降解性污染物,采用1(/d·m)2作为综合沉降系数k的表达形式,可以充分反映河床表面积的作用,并且应有正负之分;结合实测数据对镉综合沉降系数的计算,得到北江干流段综合沉降系数为0.0049~0.0570d-1;在此基础上采用两种方法计算北江水体重金属环境容量,得到北江长度约202km的河段镉的天然环境容量为24.8~26.3kg/d;最后对深入研究方向提出展望。  相似文献   

16.
滇池水环境中微囊藻毒素的生物降解   总被引:33,自引:2,他引:31       下载免费PDF全文
利用从滇池蓝藻水华生物量中提取的微囊藻毒素试验溶液,接种滇池沉积物的微生物,研究其在有氧条件下的生物降解过程.结果表明,水体中的微囊藻毒素易被生物降解,其降解反应服从方程C=A/(1+Be-Ct).当温度在12~25℃,加入的沉积物量为1~10g时,藻毒素粗提液的平均降解反应速率为3.181.13d-1,平均半衰期t1/2为2.661.27d,且藻毒素的生物降解速度随反应温度和沉积物量的增加而提高.研究结果还表明,生物降解是去除滇池水环境中微囊藻毒素的一个重要机制.  相似文献   

17.
丹江口水库氮磷内源释放对比   总被引:4,自引:0,他引:4  
利用柱状沉积物采样器在丹江口水库采集不同点位原位柱状沉积物,通过静态培养释放实验及间隙水分子扩散模型两种方法获取沉积物-水界面N和P释放速率,分析水体N和P释放特征.结果表明,不同采样点N和P界面交换速率差异显著.静态培养条件下,5个点位NH_4~+-N和PO_4~(3-)-P释放速率分别为13. 07~24. 88 mg·(m~2·d)~(-1)和3. 06~6. 02 mg·(m~2·d)~(-1);分子扩散模型条件下,5个点位NH_4~+-N和PO_4~(3-)-P释放速率分别为2. 67~7. 25 mg·(m~2·d)~(-1)和0. 04~0. 18 mg·(m~2·d)~(-1). N和P释放速率总体呈北高南低的趋势,支流N和P最低释放速率分别是主库区最高释放速率的1. 48和1. 57倍.两种方法均表明郭家山支流N和P的释放速率最高,具有较大内源N和P释放风险.比较两种方法发现,利用Fick定律计算出的界面N和P释放速率明显小于柱样模拟方法得出的结果,N和P的R/F值分别为3. 43~4. 98和29. 67~72. 88,这表明用分子扩散模型法进行内源释放速率估算时,偏离真实情况较大,而原柱样静态模拟实验则较贴近真实情况.  相似文献   

18.
何秀婷  王奇  聂湘平  杨永涛  程章 《环境科学》2014,35(7):2728-2735
采用高效液相色谱-紫外检测器(HPLC-UV)分析了广东沿海大亚湾和阳江两个典型海水养殖区中沉积物以及7种养殖鱼类肌肉和肝脏组织中磺胺嘧啶(SDZ)、磺胺二甲嘧啶(SM2)和磺胺甲基异噁唑(SMX)的残留量,并依据药品最高残留量(MRL)值和每日允许摄入量(ADI)值对海水养殖鱼类中磺胺类抗生素污染进行人体健康风险评价.结果表明,在所有沉积物样品中都能检出磺胺类抗生素.含量(干重)范围为:2.1~35.2 ng·g-1,检出率大小顺序为SDZ(85.7%)>SM2(71.4%)>SMX(28.6%).大亚湾养殖区磺胺药物在沉积物和鱼类样品中的检出频率大于阳江养殖区.3种磺胺类药物在鱼肝脏组织中的含量显著高于在肌肉组织中的含量(P<0.05).SDZ、SM2和SMX在鱼体肌肉组织中的含量(湿重)范围分别为11.6~37.9、16.3~27.8和4.9~20.0 ng·g-1.3种磺胺类药物的平均日摄入量范围为3.37~36.72 ng·kg-1,仅占食用肉类ADI的最高限值(50μg·kg-1)的0.007%~0.073%(<1%ADI),健康风险为可以忽略,膳食安全性高.  相似文献   

19.
酸性矿山排水污染的水库水体酸化特征   总被引:2,自引:0,他引:2  
矿业开发产生的酸性排水导致下游水体酸化,严重破坏水域生态平衡. 以受酸性矿山排水(Acid Mine Drainage,AMD)影响的水库水体为研究对象,通过对水库表层水、界面水和沉积物孔隙水中水质参数的变化进行分析,探讨水库水体酸化特征. 结果表明:表层水、界面水pH分别为3.22~3.38和2.70~3.02,水库上覆水体严重酸化,沿沉积物剖面向下酸化程度逐渐减弱;上游AMD在水库水体中存在自然净化过程,而表层沉积物可再次提高上覆水体酸度;沉积物孔隙水ρ(SO42-)极高(0.29~11.85 g/L)且在垂向剖面上变化波动较大,可能与沉积物中次生矿物的形成转化、季节及其他外界条件的变化有关.   相似文献   

20.
采用好氧、缺氧、厌氧活性污泥对三氯生(TCS)进行降解,并研究降解动力学。试验采用人工配水,TCS初始浓度分别为50、100、200μg/L,将混合液悬浮固体浓度(MLSS)为2 200 mg/L的活性污泥200 mL加入锥形瓶中,置于转速为125 r/min,温度为(20±0.5)℃的恒温摇床里进行降解试验。结果表明,好氧、缺氧、厌氧活性污泥降解TCS的反应初期,TCS都会迅速吸附在活性污泥上,造成水相浓度迅速降低,泥相浓度迅速增加。好氧活性污泥能有效地降解TCS,反应7 d后,TCS的降解率达50%左右。好氧降解过程符合假一级反应动力学,反应速率常数为0.085 6 d~(-1),半衰期为8.095 d。好氧活性污泥对TCS的降解效果优于缺氧和厌氧活性污泥;缺氧活性污泥对TCS有少量的降解,降解率为20%左右;厌氧活性污泥不能有效地降解TCS。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号