首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study is dealing with the distribution and the origin of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in soils from a priori non-polluted areas. Positive correlations with organic matter and clay content but not with pH have been observed for most of elements analyzed in this study. Correlations of some metals (Cr, Pb and Zn) and radionuclides (238U and 137Cs) observed for analyzed soils could be explained by their common affinity for clay minerals. Enrichment factor (EF) analysis and cluster analysis (CA) highlighted the lithogenic origin of Cr, Cu, Mn, Ni, Pb and Zn and pointed out the primary input of Cd from anthropogenic sources. It also revealed the need for detailed geochemical surveys in the future in order to decrease the uncertainty of discrimination between lithogenic and anthropogenic origin of metals of interest.  相似文献   

2.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

3.
Heavy metals in the surface soils from lands of six different use types in one of the world’s most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma–mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2?×?104 km2) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas?>?waste disposal/treatment sites?~?industrial areas?>?agricultural lands?~?forest lands?>?water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.  相似文献   

4.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

5.
Abstract

Contaminated soils can be a source for crop plants of such elements like As, Cd, Cr, Cu, Ni, Pb, and Zn. The excessive transfer of As, Cu, Ni, and Zn to the food chain is controlled by a “soil‐plant barrier”; however, for some elements, including Cd, the soil‐plant barrier fails. The level of Cd ingested by average person in USA is about 12 μg/day, which is relatively low comparing to Risk Reference Dose (70 μg Cd/day) established by USEPA. Food of plant origin is a main source of Cd intake by modern society. Fish and shellfish may be a dominant dietary sources of Hg for some human populations. About half of human Pb intake is through food, of which more than half originates from plants. Dietary intake of Cd and Pb may be increased by application of sludges on cropland with already high levels of these metals. Soils amended with sludges in the USA will be permitted (by USEPA‐503 regulations) to accumulate Cr, Cd, Cu, Pb, Hg, Ni, and Se, and Zn to levels from 10 to 100 times the present baseline concentrations. These levels are very permissive by international standards. Because of the limited supply of toxicity data obtained from metals applied in sewage sludge, predictions as to the new regulations will protect crop plants from metal toxicities, and food chain from contamination, are difficult to make.  相似文献   

6.
Concentration of ten metals (Cd, Cr, Co, Cu, Fe, Li, Mn, Ni, Pb and Zn) were analyzed in the egg contents, prey and soil samples of little egret (Egretta garzetta) and cattle egret (Bubulcus ibis) from two Headworks to determine habitat and species-specific differences; to assess the importance of prey and habitat contamination as an exposure source for heavy metals. Concentration of Cu, Mn, Cr and Pb in egg contents, Fe, Co, Cu, Mn, Zn in prey and Fe, Co, Cu, Ni, Li in surface soils were significantly different (P < 0.05). Mean metal concentrations of Cr, Pb and Cd were relatively higher in little egret whereas Cu and Mn were higher in the egg contents of cattle egret. The mean concentrations of Cu, Mn and Zn were higher in prey samples of cattle egrets and Cr, Cd and Pb in prey samples of little egrets. In soil samples collected from little egret heronries metal concentrations were higher except Cu and Ni. Correlation Analysis and Hierarchical Agglomerative Cluster Analysis (HACA) identified relatively similar associations of metals and their source identification. Metals such as Fe, Cu, Mn, and Li were related with geochemical origin from parent rock material as well as anthropogenic input whereas Cr, Cd, Pb, Ni, Co and Zn were associated mostly with anthropogenic activities. The study suggested that eggs are useful bio-monitor of local heavy metal contamination.  相似文献   

7.
Contaminated soils can be a source for crop plants of such elements like As, Cd, Cr, Cu, Ni, Pb, and Zn. The excessive transfer of As, Cu, Ni, and Zn to the food chain is controlled by a "soil-plant barrier"; however, for some elements, including Cd, the soil-plant barrier fails. The level of Cd ingested by average person in USA is about 12 micrograms/day, which is relatively low comparing to Risk Reference Dose (70 micrograms Cd/day) established by USEPA. Food of plant origin is a main source of Cd intake by modern society. Fish and shellfish may be a dominant dietary sources of Hg for some human populations. About half of human Pb intake is through food, of which more than half originates from plants. Dietary intake of Cd and Pb may be increased by application of sludges on cropland with already high levels of these metals. Soils amended with sludges in the USA will be permitted (by USEPA-503 regulations) to accumulate Cr, Cd, Cu, Pb, Hg, Ni, and Se, and Zn to levels from 10 to 100 times the present baseline concentrations. These levels are very permissive by international standards. Because of the limited supply of toxicity data obtained from metals applied in sewage sludge, predictions as to the new regulations will protect crop plants from metal toxicities, and food chain from contamination, are difficult to make.  相似文献   

8.
中国商品有机肥重金属分析   总被引:7,自引:0,他引:7  
测定了来自10个地区不同生产原料的118个商品有机肥样品的重金属含量.结果表明:(1)商品有机肥样品中的Cd、Hg、Pb、Cr、As、Zn、Cu、Ni的平均值分别为0.600、0.120、7.34、84.30、9.45、202.91、91.06、11.01 mg/kg.(2)河南、湖北、上海的商品有机肥中8种重金属平均值均较高;内蒙古的商品有机肥中Cr平均值为20.32 mg/kg,广西的商品有机肥中Zn平均值为51.36mg/kg,远低于所有样品中Cr和Zn平均值.(3)以猪粪为主要生产原料的商品有机肥中重金属平均值最高.(4)Cr超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准、加拿大堆肥重金属限量标准(A级)和加拿大堆肥重金属限量标准(B级);As、Cd超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Cu、Zn超过欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Hg超过加拿大堆肥重金属限量标准(A级);Pb超过中国商品有机肥重金属限量标准;Ni均未超标.  相似文献   

9.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

10.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

11.
A set of toxic metals, i.e. As, Hg, Pb, Cd, Cu, Zn, Ni and Cr, in urban and suburban SDSs were investigated comparatively in the biggest metropolitan area of China, Shanghai. Results showed that all of the metals except As were accumulated greatly, much higher than background values. Geo-accumulation index indicated that metal contamination in urban SDSs was generally heavier than that in suburban SDSs. Potential ecological risk index demonstrated that overall risks caused by metals were considerable. Cd contributed 52% to the overall risk. Multivariate statistical analysis revealed that in urban SDSs, Zn, Ni, Cd, Pb, Cu and Cr were related to traffic and industry; coal combustion led to elevated levels of Hg; soil parent materials controlled As contents. In suburban SDSs, Pb, Cu, As and Cd largely originated from traffic pollution; Zn, Ni and Cr were associated with industrial contaminants; Hg was mainly from domestic solid waste.  相似文献   

12.
Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.  相似文献   

13.
A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition.  相似文献   

14.
The urban soils suffered seriously from heavy metal pollutions with rapid industrialization and urbanization in China. In this study, 54 urban soil samples were collected from Changsha, a mine-impacted city located in Southern China. The concentrations of heavy metals (As, Cd, Co, Cu, Mn, Ni, Pb, and Zn) were determined by ICP-MS. The pollution sources of heavy metals were discriminated and identified by the combination of multivariate statistical and geostatistical methods. Four main sources were identified according to the results of hierarchical cluster analysis (HCA), principal component analysis (PCA), and spatial distribution patterns. Co and Mn were primarily derived from soil parent material. Cu, Pb, and Zn with significant positive relationships were associated with mining activities and traffic emissions. Cd and Ni might be affected by commercial activities and industrial discharges. As isolated into a single group was considered to have correlation with coal combustion and waste incineration. Risk assessment of heavy metals in urban soils indicated an overall moderate potential ecological risk in the urban region of Changsha.  相似文献   

15.
Lee PK  Yu YH  Yun ST  Mayer B 《Chemosphere》2005,60(5):672-689
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 +/- 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.  相似文献   

16.
17.
Environmental Science and Pollution Research - The concentrations, sources, and risks of heavy metals (Fe, Al, Mn, Cr, Co, Ni, Cu, Zn, As, Cd, W, Pb, and Tl) in sediments in five river-lake...  相似文献   

18.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals—As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

19.
The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.  相似文献   

20.

The effect of industrial activities on trace metals in farmland of rapidly industrializing regions in developing countries has increasingly been a concern to the public. Here, soils were collected from 13 greenhouse vegetable production (GVP) farms or bases near industrial areas in the Yangtze River Delta of China to investigate the occurrence, speciation, and risks of Cr, Cu, Zn, Cd, Ni, and Pb in GVP soil. The results revealed that the main metal elements causing GVP soil pollution were Cd, Zn, Ni, and Cu, of which contamination levels were generally unpolluted to moderately polluted. Zinc pollution was mainly attributed to heavy fertilization, while Cd, Ni, and Cu pollution may be greatly ascribed to industrial effluents and coal combustion. Metal speciation studies showed that most of Cr, Ni, Cu, and Zn was present in residual fraction while more than half of Cd and Pb was present in non-residual fractions. Additionally, pollution of Cd, Cu, Ni, and Zn in GVP soil increased their corresponding mobile fractions. Risk assessment using potential ecological risk index and risk assessment code showed that Cd was the major risk contributor. Specifically, Cd generally posed moderate or considerable ecological risk as well as displayed medium or high mobility risk in GVP soil. Thus, great attention should be paid to the contribution of both industrial discharges and intensive farming to soil pollution by trace metals, especially Cd, because of its high mobility risk.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号