首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
Lee Y  Lee C  Yoon J 《Chemosphere》2003,51(9):963-971
This study demonstrates the importance of reaction temperature on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). In addition, we provide a mechanistic explanation for the temperature dependence of 2,4-D degradation. Thermal enhancement of 2,4-D degradation and H(2)O(2) decomposition was measured in the absence and in the presence of the z.rad;OH scavenger (t-butanol). The half-life for 2,4-D degradation was reduced by more than 70-fold in the absence of t-butanol, and by more than 700-fold, in the presence of t-butanol, when the reaction temperature was increased from 10 to 50 degrees C. In addition, similar temperature relationships were found for H(2)O(2) decomposition. The major reason for the high temperature dependence of the Fe(3+)/H(2)O(2) system in the case of 2,4-D degradation is due to the dependence of the initiation reaction of the Fe(3+)/H(2)O(2) system (i.e., Fe(3+)+H(2)O(2)-->Fe(2+)+HO(2)(z.rad;)+H(+) upon temperature), which is entirely consistent with the kinetics of the activation energy. In the presence of a z.rad;OH scavenger, the initiation reaction of the Fe(3+)/H(2)O(2) system became a determining factor of this temperature dependence, whereas in the absence of z.rad;OH scavenger, several other radical reactions played a role and this result in an apparent decrease in the activation energy for 2,4-D degradation. Moreover, the enhanced 2,4-D removal at higher temperatures did not alter H(2)O(2) utilization. The practical implications of the thermal enhancement of the Fe(3+)/H(2)O(2) system are discussed.  相似文献   

2.
Paterlini WC  Nogueira RF 《Chemosphere》2005,58(8):1107-1116
The degradation of herbicides in aqueous solution by photo-Fenton process using ferrioxalate complex (FeOx) as source of Fe2+ was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, diuron and 2,4-D were used. The multivariate analysis, more precisely, the response surface methodology was applied to evaluate the role of FeOx and hydrogen peroxide concentrations as variables in the degradation process, and in particular, to define the concentration ranges that result in the most efficient degradation of the herbicides. The degradation process was evaluated by the determination of the remaining total organic carbon content (TOC), by monitoring the decrease of the concentrations of the original compounds using HPLC and by the chloride ion release in the case of diuron and 2,4-D. Under optimized conditions, 20 min were sufficient to mineralize 93% of TOC from 2,4-D and 90% of diuron, including oxalate. Complete dechlorination of these compounds was achieved after 10 min reaction. It was found that the most recalcitrant herbicide is tebuthiuron, while diuron shows the highest degradability. However, under optimized conditions the initial concentration of tebuthiuron was reduced to less than 15%, while diuron and 2,4-D were reduced to around 2% after only 1 min reaction. Furthermore, it was observed that the ferrioxalate complex plays a more important role than H2O2 in the photodegradation of these herbicides in the ranges of concentrations investigated.  相似文献   

3.
Kwan CY  Chu W 《Chemosphere》2007,67(8):1601-1611
Recent studies have shown that hydrogen peroxide is generated in a ferrioxalate-induced photoreductive reaction, but information about the effect of organic ligands on the photochemical behaviour of ferrous species is limited. The degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by a ferrous-catalyzed oxidation in the presence of various ligands such as formate, citrate, malelate, oxalate, and ethylenediaminetetra-acetic acid (EDTA) was studied. The experiments were conducted under either dark or irradiated (350n m) conditions. Forty-two percent and 34% of 2,4-D were removed by the Fe(2+)/oxalate/UV and Fe(2+)/citrate/UV processes, respectively, after 30 min of reaction and oxidative intermediates were obtained in both cases. The presence of hydroxylated intermediates suggests that 2,4-D may be attacked by hydroxyl radicals, which are the products of the photo-Fenton-like reaction. As such, hydrogen peroxide was produced by the photolysis of ferrous oxalate or ferrous citrate, referred to hereafter as photogenerated H(2)O(2). As expected, the total removal percentage of 2,4-D jumped to 97% when 1mM of hydrogen peroxide (so-called spiked H(2)O(2)) was externally added to the reaction vessel to initiate the Fe(2+)/oxalate/UV process. Therefore, the treatment of 2,4-D by the Fe(2+)/oxalate/H(2)O(2)/UV system can be operated in two steps: the photolysis of ferrous oxalate first, followed by adding the spiked H(2)O(2) sometime after the commencement of the reaction. A two-phase model has been developed to describe this tandem ferrous-catalyzed photooxidation, which would help to achieve the mineralization of 2,4-D.  相似文献   

4.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

5.
Concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) may affect its degradation kinetics in advanced oxidation systems, and combinations of two or more systems can be more effective for its mineralization at low concentration levels. Degradations and mineralizations of 0.045mM 2,4-D using O(3), O(3)/UV, UV/TiO(2) and O(3)/UV/TiO(2) systems were compared, and influence of reaction temperature on the mineralization in O(3)/UV/TiO(2) system was investigated. 2,4-D degradations by O(3), O(3)/UV and UV/TiO(2) systems were similar to the results of earlier investigations with higher 2,4-D concentrations. The degradations and total organic carbon (TOC) removals in the four systems were well described by the first-order reaction kinetics. The degradation and removal were greatly enhanced in O(3)/UV/TiO(2) system, and further enhancements were observed with larger O(3) supplies. The enhancements were attributed to hydroxyl radical (()OH) generation from more than one reaction pathway. The degradation and removal in O(3)/UV/TiO(2) system were very efficient with reaction temperature fixed at 20 degrees C. It was suspected that reaction temperature might have influenced ()OH generation in the system, which needs further attention.  相似文献   

6.
The photo-Fenton process using potassium ferrioxalate as a mediator was investigated for the photodegradation of dichloracetic acid (DCA) and 2,4-dichlorophenol (DCP) in aqueous medium using solar light as source of irradiation. The influence of the solution depth, the light intensity and the effect of stirring the solution during irradiation process were evaluated using DCA as a model compound. A negligible influence of stirring the solution was observed when the concentration of ferrioxalate (FeOx) was 0.8 mM and solution depth was 4.5 or 14 cm. The optimum FeOx concentration determined for solution depths between 4.5 and 14 cm was 0.8 mM considering total organic carbon (TOC) removal during DCA irradiation. The high efficiency of the photo-Fenton process was demonstrated on summer days, when only 10 min of exposition (around noon) were sufficient to completely destroy the organic carbon of a 1.0 mM DCA solution in the presence of 0.8 mM FeOx and 6.0 mM H2O2 using a solution depth of 4.5 cm. It was observed that the photodegradation efficiency increases linearly with the solar light intensity up to values around 15 Wm(-2) but this linear relationship does not hold above this value showing a square root dependence. The photodegradation of a solution of DCP/FeOx showed a lower TOC removal rate than that observed for DCA/FeOx, achieving approximately 90% after 35 min irradiation under 19 W m(-2), while under this light intensity, the same TOC removal of DCA/FeOx was achieved in only 10 min irradiation.  相似文献   

7.
The photodestruction of Acid Orange 7 (AO7), an anionic acidic dye, was studied in the UV/H2O2 process. H2O2 and UV light have a negligible effect when they were used on their own. Removal efficiency of AO7 was sensitive to the operational parameters such as initial H2O2 concentration, initial AO7 concentration, pH and different light sources. The photodestruction of AO7 was inhibited by addition of EtOH as an electron scavenger. The semi-logarithmic graphs of the concentration of AO7 versus time (t<30 min) were linear, suggesting pseudo-first order reactions (k(optimum)=0.105 min(-1)). A simple kinetic model is proposed which is in agreement with experimental results.  相似文献   

8.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

9.
采用O3/H2O2法去除水中丁基黄药,考察了H2O2/O3摩尔比、pH值、丁基黄药初始浓度、温度和自由基抑制剂对丁基黄药的去除效果的影响。结果表明,在相同O3投加量下,H2O2量越大,丁基黄药去除率越高。pH值为7~9,温度在293~303 K的范围内,O3/H2O2对丁基黄药都有很高的去除率。碳酸氢根和叔丁醇能在一定程度上降低丁基黄药的降解效率。研究还发现,在O3和H2O2投加量相同的条件下,H2O2多次投加对水中丁基黄药的处理效果明显优于一次性投加。GC/MS分析表明,O3/H2O2氧化丁基黄药氧化产物为羧酸类物质。  相似文献   

10.
Jung J  Yoon JH  Chung HH  Lee MJ 《Chemosphere》2003,51(9):881-885
The effects of H(2)O(2) and O(3) on the decomposition of trichloroethylene (TCE) and perchloroethylene (PCE) by gamma-rays (gamma-rays) were investigated in this work. The combined gamma-rays/O(3) process showed a synergistic effect and enhanced the removal of TCE and PCE compared with gamma-rays alone, but, the gamma-rays/H(2)O(2) process did not increase the removal. This interesting result was successfully identified by an electron paramagnetic resonance spectroscopy/spin-trapping method that can quantify hydroxyl radicals, which is directly related to the efficiency of TCE and PCE decomposition. For gamma-rays/H(2)O(2) system, there was no difference of hydroxyl radical production between gamma-rays alone and gamma-rays/H(2)O(2). This indicates gamma-rays cannot activate H(2)O(2) to produce hydroxyl radicals and this causes no increase of TCE and PCE removals. To the contrary, the production of hydroxyl radicals was obviously increased in the case of gamma-rays/O(3) process. This suggests additional hydroxyl radicals are produced from the reaction of O(3) with the irradiation products of water such as hydrated electrons, hydrogen atoms, etc. and this accelerates the removal of TCE and PCE.  相似文献   

11.
采用O3/H2O2法去除水中丁基黄药,考察了H2O2/O3摩尔比、pH值、丁基黄药初始浓度、温度和自由基抑制剂对丁基黄药的去除效果的影响。结果表明,在相同O3投加量下,H2O2量越大,丁基黄药去除率越高。pH值为7~9,温度在293~303 K的范围内,O3/H2O2对丁基黄药都有很高的去除率。碳酸氢根和叔丁醇能在一定程度上降低丁基黄药的降解效率。研究还发现,在O3和H2O2投加量相同的条件下,H2O2多次投加对水中丁基黄药的处理效果明显优于一次性投加。GC/MS分析表明,O3/H2O2氧化丁基黄药氧化产物为羧酸类物质。  相似文献   

12.
Zhou D  Wu F  Deng N 《Chemosphere》2004,57(4):283-291
In this work, the photooxidation of diethylstilbestrol (DES), a synthetic estrogen, was investigated in a concentric reactor under a 125 W high-pressure mercury lamp (lambda > or = 365 nm). The photooxidation efficiencies were dependent on the pH values and Fe(III)/oxalate ratios of the system, with higher efficiency at pH 3.50+/-0.05 and Fe(III)/oxalate ratio 10.0/120.0 micromol l(-1). The photooxidation reactions obeyed the law of pseudo-first-order reaction at the concentration over the range of 2.0-10.0 mg l(-1) of DES. The photooxidation rates decreased with increasing the initial concentrations of DES. For 2.0 mg l(-1) DES, the observed photooxidation rate coefficient (k(obs)) was 0.00622 min(-1). By using GC-MS and LC-MS techniques, the predominant photooxidation products DES-o-catechol ([M](+), m/z 284) and DES-4-semiquinone ([M](-), m/z 267) were respectively identified and the mechanisms for the oxidative degradation were proposed. When DES reacted with OH radicals, C atoms in 3-position were added with OH radicals to produce hydrolyzed DES radical followed by two oxidation pathways: (1) dehydrolyzing to produce DES-4-semiquinone which was oxidized further to DES-4,4'-quinone; (2) undergoing peroxidation by O(2) and getting rid of HO(2) radical to produce DES-o-catechol. After that, the two H atoms on the hydroxy group of the catechol were extracted in two individual steps to form intermediates semiquinone radical and o-quinone. The catechol intermediates underwent further oxidation, benzene ring cleavage and decarboxylation, up to mineralization ultimately.  相似文献   

13.
Yu S  Lee B  Lee M  Cho IH  Chang SW 《Chemosphere》2008,71(11):2106-2112
There has been recent growing interest in the presence of antibiotics in different environmental sectors. One considerable concern is the potential development of antibiotic-resistant bacteria in the environment, even at low concentrations. Cefaclor, one of the beta-lactam antibiotics, is widely used as an antibiotic. Kinetic studies were conducted to evaluate the decomposition and mineralization of cefaclor using gamma radiation. Cefaclor, 30 mg/l, was completely degraded with 1,000 Gy of gamma radiation. At a concentration of 30 mg/l, the removal efficiency, represented by the G-value, decreased with increasing accumulated radiation dose. Batch kinetic experiments with initial aqueous concentrations of 8.9, 13.3, 20.0 and 30.0mg/l showed the decomposition of cefaclor using gamma radiation followed a pseudo first-order reaction, and the dose constant increased with lower initial concentrations. At a given radiation dose, the G-values increased with higher initial cefaclor concentrations. The experimental results using methanol and thiourea as radical scavengers indicated that ()OH radicals were more closely associated with the radiolytic decomposition of cefaclor than other radicals, such as e(aq)(-) or ()H. The radical scavenger effects were tested under O(2) and N(2)O saturations for the enhancement of the TOC percentage removal efficiencies in the radiolytic decomposition of cefaclor. Under O(2) saturation, 90% TOC removal was observed with 100,000 Gy. Oxygen is well known to play a considerable role in the degradation of organic substances with effective chain reaction pathways. According to the effective radical reactions, the enhanced TOC percentage removal efficiencies might be based on the fast conversion reactions of e(aq)(-) and ()H with O(2) into oxidizing radicals, such as O(2)(-) and HO(2)(), respectively. 100% TOC removal was obtained with N(2)O gas at 20,000 Gy, as reducing radicals, such as e(aq)(-) and ()H, are scavenged by N(2)O and converted into ()OH radicals, which have strong oxidative properties. The results of this study showed that gamma irradiation was very effective for the removal of cefaclor in aqueous solution. The use of O(2) or N(2)O, with radiation, shows promise as effective radical scavengers for enhancing the TOC or COD removal efficiencies in pharmaceutical wastewaters containing antibiotics. However, the biological toxicity and interactions between various chemicals during the radiolytic treatment, as well as treatments under conditions more representative of real wastewater will require further studies.  相似文献   

14.
The photodegradation of polychlorinated dibenzo-p-dioxins (PCDDs), which include tetra- to octa-CDDs (TeCDD, PeCDD, HxCDD, HpCDD and OCDD), was carried out in the presence of Fe(II) and H2O2 mixed reagent. The degradation efficiency was strongly influenced by UV irradiation, and the initial concentrations of H2O2 and Fe(II). An initial TeCDD concentration of 10 ng l(-1) was completely degraded within 20 min under the optimum conditions. All PCDDs tested were successfully degraded by Fe(II)/H2O2/UV treatment and complete degradation of TeCDD, PeCDD and HxCDD was achieved within 120 min. PCDD photodegradation rates decreased with the number of chlorine atoms. The degradation process of TeCDD by this system seems to be initiated by an oxidative reaction (OH* radical attack) because less chlorinated DDs as intermediate products were not detected. From the Frontier electron density calculation, the first OH* radical attack positions on TeCDD were found to be four C atoms neighboring two O atoms. The decomposition of TeCDD gave 4,5-dichlorocatechol as an intermediate product. A TeCDD degradation scheme was proposed based on the identified intermediate and the values of Frontier electron density. Based on these results, Fe(II)/H2O2/UV system could be useful technology for the treatment of wastewater containing persistent pollutants such as dioxins and polychlorinated biphenyls.  相似文献   

15.
研究了超声波(ultrasonic)和紫外线(ultraviolet)-Fenton反应联用处理干旱区老化石油污染土壤。土壤TPH含量为30 470 mg/kg,pH值为3,H2O2与Fe比例为50∶1时,H2O2浓度为0.37%、0.74%、1.11%和1.85%在超声波处理6 h土壤TPH去除量分别为4 495、11 983、15 470和19 800 mg/kg;TPH去除量随H2O2/Fe2+增大而增大,H2O2/Fe2+为100∶1时,TPH去除量为12 699 mg/kg。溶液pH值接近中性,H2O2浓度为0.74%,H2O2/Fe2+为50∶1,超声波与UV共同作用2 h和4 h,TPH去除量分别达到14 824和21 821 mg/kg;UV单独作用2 h、4 h对土壤TPH去除量为9 253和12 845 mg/kg。超声波-Fenton反应对1,2-二甲苯降解效果最好,其次为C17-C28的直链及支链烷烃,最低为烃类衍生物。  相似文献   

16.
Li L  Zhu W  Zhang P  Zhang Z  Wu H  Han W 《Chemosphere》2006,62(9):1514-1522
AC (activated carbon)/O3-BAC (biological activated carbon) process was employed to treat secondary effluent and compared to O3-BAC process. The effects of ozone dosages and empty bed contact time (EBCT) in BAC on dissolved organic carbon (DOC) removal were investigated. The results showed that the presence of AC improved ozone utilization and biodegradability of the effluent. DOC removal increased with ozone dosage and EBCT in BAC, however, 3 mg l(-1) ozone dosage with 15 min oxidation time and 15 min EBCT in BAC were more economical and efficient. For DOC removal, AC/O3-BAC was more efficient than O3-BAC and its synergetic effect was more than that in O3-BAC process. The biomass of the subsequent BAC unit in AC/O3-BAC process was more than that in O3-BAC process and much more than that in BAC alone. Except for organic pollutants with molecular weight (MW) >10 kDa, those of other MW range were decomposed much more by AC/O3 process than by O3 process. GC/MS analysis showed that dibutyl phthalate, bis(2-ethylhexyl) phthalate, 4-bromo-3-chloroaniline, 2-propanone-ethylhydrazone and phenol derivatives were prevalent organic compounds in the secondary effluent. Some aromatic compounds, such as 4-bromo-3-chloroaniline and 2,4-dichloro-benzenamine disappeared after AC/O3 treatment. However, some small molecules were generated, after further biological treatment by BAC, the kinds and concentration of organic compounds were greatly reduced.  相似文献   

17.
The removal of sulfur dioxide (SO2) from simulated flue gases streams (N2/O2/H2O/SO2) was experimentally investigated using microgap discharge. In the experiment, the thinner dielectric layers of aluminum oxide (Al2O3) were used to form the microgap discharge. With this physical method, a high concentration of hydroxyl (OH*) radicals were produced using the ionization of O2 and H2O to further the conversion of SO2 into sulfuric acid (H2SO4) at 120 degrees C in the absence of any catalysts and absorbents, which were captured with the electrostatic precipitator (ESP). As a result, the increase of discharge power and concentrations of O2 and H2O increased the production of OH. radicals resulting in enhanced removal of SO2 from gas streams. With the test and analysis, a number of H2SO4 droplets were produced in experiment. Therefore, a new method for removal of SO2 in semidry method without ammonia (NH3) additive was found.  相似文献   

18.
Lee C  Yoon J 《Chemosphere》2004,56(10):923-934
The thermal enhancement of the formation of *OH by the hv/Fe(III)/H2O2 system (including the Fe(III)/H2O2 system) was quantitatively investigated with reaction temperatures ranging from 25 to 50 degrees C. A temperature dependent kinetic model for the hv/Fe(III)/H2O2 system, incorporating 12 major reactions with no fitted rate constants or activation energies, was developed, and successfully explained the experimental measurements. Particularly, the thermal enhancement of Fe(OH)2+ photolysis which is the most significant step in the hv/Fe(III)/H2O2 system was effectively explained by two factors; (1) the variation of the Fe(OH)2+ concentration with temperature, and (2) the temperature dependence of the quantum yield for Fe(OH)2+ photolysis (measured activation energy=11.4 kJ mol(-1)). Although in both the hv/Fe(III)/H2O2 and Fe(III)/H2O2 systems, elevated temperatures enhanced the formation of *OH, the thermal enhancement was much higher in the dark Fe(III)/H2O2 system than the hv/Fe(III)/H2O2 system. Furthermore, it was found that the relative thermal enhancement of the formation of *OH in the presence of *OH scavengers (tert-butyl alcohol) was magnified in the Fe(III)/H2O2 system but was not in the hv/Fe(III)/H2O2 system.  相似文献   

19.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

20.
Liao CH  Lu MC  Su SH 《Chemosphere》2001,44(5):913-919
The purpose of this study is to reveal the role of cupric ions as a natural water contaminant in the H2O2/UV oxidation of humic acids. Humic acids are naturally occurring organic matter and exhibit a strong tendency of complexation with some transition metal ions. Chlorination of humic acids causes potential health hazards due to formation of trihalomethane (THM). The removal of THM precursors has become an issue of public concern. The H2O2/UV process is capable of mineralizing humic acids due to formation of a strong oxidant, hydroxyl radicals, in reaction solution. Experiments were conducted in a re-circulated photoreactor. Different cupric concentrations (0-3.8 mg/l) and different pH values (4-9) were controlled to determine their effects on the degradation of humic acids, UV light absorbance at 254 nm, and H2O2. The presence of cupric ions inhibits humic mineralization and decreases the rate of destruction of humic acids which absorb UV light at 254 nm. On the other hand, the higher the cupric concentration, the lower the H2O2 decomposition rate. In the studied pH range, the minimum of total organic carbon (TOC) removal occurs at pH = 6 in the presence of 2.6 mg/l of cupric ions; both acidification (pH = 4) and alkaline condition (pH = 9) lead to a better removal of TOC. It is inferred from this study that the cupric-complexed form of humic acids is more refractory than the non-complexed one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号