首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ABSTRACT: During the summer of 1971 about 150 water samples were examined for total and fecal coliform bacteria in the Upper Illinois Waterway at 19 river stations. The data per station were found to be normal geometric distributed. Bacteria densities changed with sampling dates and generally decreased with water movement downstream. Several sewage treatment effluents made marked pulses along the bacterial die-off curves. The observed fecal coliform results were evaluated in terms of the Illinois Pollution Control Board's standards. The FC:TC ratio on the waterway for each station were presented. Using Chick's Law, coliforms death rates were estimated. Efforts to correlate observed total and fecal densities with temperature, flow, algal densities, dissolved oxygen, and 5-day biochemical oxygen demand were not successful. (KEY TERMS: algae; biochemical oxygen demand; coliform bacteria; dissolved oxygen; flow; stream survey; temperature; water pollution; water quality standards)  相似文献   

2.
ABSTRACT: Specific conductivity, pH, dissolved oxygen, carbon, phosphorous, and nitrogen species were measured at 36 stations in the Richibucto River drainage basin, including the estuary, in New Brunswick, Canada, over the six‐year period 1996 through 2001. Each station was sampled between 1 and 26 times (mean = 7.5, standard deviation = 6.0) during the ice free seasons without regard to tide. There was significant variance among stations in most parameters. Principal component analysis (PCA) was used to identify the processes explaining the observed variance in water quality. Because of the high variability in specific conductance, stations were first grouped in a freshwater subset and an estuarine (brackish water) subset. For freshwater stations, most of the variance in water quality was explained by pH and total organic carbon, as well as high nutrient concentrations. These high nutrient concentrations, along with water salinity, which varies with flow and tides, are also important in determining water quality variability in brackish water. It is recommended that water quality parameters that were found to explain most of the variance by PCA be monitored more closely, as they are key elements in understanding the variability in water quality in the Richibucto drainage basin. Cluster analyses showed that high phosphorous and nitrate concentrations were mostly found in areas of peat runoff, tributaries receiving treated municipal effluent, and lentic zones upstream of culverts. Peat runoff was also shown to be acidic, whether it is runoff from a harvested area or a natural bog.  相似文献   

3.
ABSTRACT: The spatial and temporal variability of dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrate concentration and total coliform (TC) were investigated at nine sampling stations distributed along the main rivers of the Piracicaba River Basin, a 12,400 km2 catchment located in São Paulo State, one of the most developed regions of Brazil. Spatially, a downstream impoverishment of water quality conditions was observed, as seen by the decrease of DO, and increase of BOD, nitrate, and TC. These changes were probably caused by accumulating downstream discharge of domestic and industrial sewage. Temporal evaluation of 18 years of data showed that DO decreased with time for the majority of the sampling stations, while BOD, nitrate, and TC increased. A law, approved at the end of 1991, proposed a new water tax for river water extraction for industrial and agricultural use. The amount of this tax is determined according to the water quality of the extracted water. Therefore, the evaluation of the water quality status in this basin is a first step to help resources managers to determine the values for this tax.  相似文献   

4.
ABSTRACT: A residential single family dwelling was retrofitted to recycle graywater for landscape irrigation and toilet flushing. The objective of this study was to determine improvements in graywater quality by evaluating five simple graywater treatment systems that were easily adapted to the household plumbing. The treatment systems consisted of (1) water hyacinths and sand filtration, (2) water hyacinths, copper ion disinfection, and sand filtration, (3) copper ion disinfection and sand filtration, (4) copper/silver ion disinfection and sand filtration, and (5) 20–μm cartridge filtration. Water quality parameters measured were fecal and total coliform indicator bacteria, nitrates, suspended solids, and turbidity. Reductions in bacterial concentration, suspended solids and turbidity were achieved by all systems tested. Treatment reduced nitrate concentrations to an average of 2.6 mg/liter. Reductions in suspended solids, and turbidity were influenced more by the quality of the graywater entering the treatment system than the efficiency of the systems themselves. The water hyacinths and sand filtration system provided the best graywater quality in terms of the concentrations of fecal indicator bacteria. The system providing the best water quality in regard to average suspended solids after treatment was the water hyacinths, copper ion, and sand filtration system, and the best average turbidity was achieved by the copper/silver ion generating unit with sand filtration. All systems were capable of significant reductions in fecal indicator bacteria, suspended solids, and turbidity; however, additional treatment or disinfection would be necessary to further reduce the level of coliform and fecal coliform bacteria to achieve regulatory standards in the State of Arizona.  相似文献   

5.
Wise and sustainable uses of water resources are essential for an effective river-basin-management planning. Recent management strategy further addresses the fact that quantity and quality of water are closely interrelated, and both must be considered simultaneously for all water resources and water quality management practices. The aim of this paper is to explore the impacts of water resources redistribution and pollution prevention actions between and within river basins simultaneously in South Taiwan. Much emphasis will be placed on assessing the impacts of water transfer over natural boundary to satisfy the needs of industrial development in the Tseng-Wen River system and its resultant influence on the water quality in the downstream area of the Kao-Ping River system where the pollution prevention program is to be implemented. The Kao-Ping River was further characterized hydraulically and environmentally, based on a full investigation of discharges and withdrawals in the river reaches. QUAL2E was successfully calibrated and validated using data collected between 1998 and 1999, and the model was capable of predicting the concentrations of biochemical oxygen demand, dissolved oxygen, total phosphate-phosphorus, and ammonia-nitrogen (NH3-N) for the entire river system. With the aid of QUAL2E simulation model, it shows eliminating the pig farming activities and constructing the sewer systems in the upstream area of Kao-Ping River cannot guarantee the full compliance with water quality standards in the downstream area and water transfer in the upstream area further increases negative impacts on the water quality in the wet season. The predicted situation of water quality in the dry season may even present worse condition. Additional water pollution control policy, such as the use of economic instruments, for controlling and reducing the waste-load of biochemical oxygen demand and ammonia-nitrogen is needed in the Kao-Ping River system in the long run.  相似文献   

6.
Cumulative impact of marinas on estuarine water quality   总被引:1,自引:0,他引:1  
The purpose of this work is to present a modeling approach for assessing and managing the cumulative impact of marinas on estuarine systems. In doing so, both a water-quality model and a planning and management model are developed. The water-quality model predicts biochemical oxygen demand (BOD) and fecal coliform (FC) loadings from marina sources in a hypothetical North Carolina estuary. By running the water-quality model repeatedly with varied loading input, impact coefficients are determined. These impact coefficients are used in the planning and management model, the output of which gives the sizes and locations of marinas in the estuarine system such that dissolved oxygen (DO) and FC water-quality standards are maintained.Five different estuarine development scenarios are considered. Each scenario is evaluated with respect to both maximum and uniform land development constraints. In addition, two alternative fecal coliform standards are used with each of the development options.  相似文献   

7.
The microbiological and physico-chemical characteristics of the drinking water supplied by the Central Borehole at the University of Benin, Ugbowo Campus were investigated. The investigation entailed assessment of the pH, turbidity, total suspended solids, total dissolved solids, dissolved oxygen, temperature, salinity, conductivity, nitrate, nitrite, phosphate, sulphate, chloride, N-nitroso compounds, cadmium, chromium, nickel, lead, zinc, manganese, iron, coliform count, BOD5 and COD of the water at the Central Borehole and at ten residential quarters. The assessment indicated that the water was fit for drinking and other domestic applications. Results were also compared with WHO, EU and Nigeria FEPA standards. The results showed that the pH values of the water (5.01–5.86) and total coliform count (1–2/100 ml) expressed as MPN were outside the limits set by the WHO, EU and FEPA. The data also showed that the other water quality parameters assessed were within WHO, EU and FEPA permissible limits. The results of ANOVA showed that significant changes occurred during distribution.  相似文献   

8.
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measurements to calculate the light attenuation coefficient by considering the effects of suspended sediment and chlorophyll. The processes of adsorption–desorption of nutrients by sediment were described using the Langmuir Equation. The release rates of nutrients from the bed were calculated based on the concentration gradient across the water–sediment interface and other variables including pH, temperature and dissolved oxygen concentration.The model was calibrated and validated by applying it to simulate the concentrations of chlorophyll and nutrients in a natural oxbow lake in Mississippi Delta. The simulated time series of phytoplankton (as chlorophyll) and nutrient concentrations were generally in agreement with field observations. Sensitivity analyses were conducted to demonstrate the impacts of varying suspended sediment concentration on lake chlorophyll levels.  相似文献   

9.
Conclusions In addition to this natural water-holding capacity of completely forested mountains, development for conservation of water should insure man-made mountain water storage systems, consisting of tanks, ponds, small dams and reservoirs, and artificial lakes at varying altitudes in the Himalayas. An elaborate system of canals would be needed to carry clean water for drinking and cultivation. Alternatively, adjacent highland lakes may be linked up by canals provided with wiers and sluice gates, to carry water to all levels.  相似文献   

10.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

11.
ABSTRACT: The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.  相似文献   

12.
Abstract: Diverse cropping systems can have significant impacts on nutrient losses through tile drain systems and to surface water bodies (rivers and streams). Increased transport of nitrogen to water bodies can reduce dissolved oxygen and enrich the supply of nutrients, resulting in hypoxic zones. With the objective of reducing the transport of nutrients from agricultural watersheds, long term studies (1990 to 1998) were conducted in Iowa to investigate the impact of tillage, crop rotation, and N-management practices on NO3-N leaching losses to tile drain water. Results of these studies indicated that continuous corn production systems required higher input of nitrogen fertilizers and resulted in significantly higher NO3-N leaching losses compared to rotated corn in plots either fertilized with manure or urea ammonium nitrate. Also, rotated corn gave higher corn yields, 8 megagrams per hectare (Mg/ha) versus 6 Mg/ha, than continuous corn. The higher N application rates resulted in increased NO3-N concentrations in tile water. A strip cropping system with alfalfa lowered NO3-N concentrations in tile water to less than 10 mg/l. These studies indicated that better land use practices can reduce NO3-N leaching losses to surface and ground water systems and will help in mitigating environmental concerns of the production agriculture.  相似文献   

13.
An assessment of the pollution status of River Illo, located within River Owo catchments area in Ota, Ogun State, Nigeria, was carried out. The River’s response to deoxygenation due to BOD loading from an abattoir and its dissolved oxygen (DO) level was predicted using the modified Streeter-Phelps model. The average concentrations of measured parameters at the sampling stations include: 2.24 mg/l of DO, 312.85 mg/l of BOD, 782.86 mg/l of chemical oxygen demand, and 620.76 g/l of total solids. The DO model for River Illo showed a positive correlation between measured and calculated DO, while the dissolved oxygen curve gave a double spoon shape of two major segments with distinct zones of degradation, decomposition, and recovery. The self-purification factor (f) for both segments ranged between 0.8 and 1.1 depicting River Illo as a slow moving or sluggish river. The above results revealed slow reaeration of the water body while full recovery from pollution was difficult. The treatment of River Illo before usage is very essential to ensure public health safety of users from waterborne diseases.  相似文献   

14.
Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.  相似文献   

15.
Todd, M. Jason, George Vellidis, R. Richard Lowrance, and Catherine M. Pringle, 2009. High Sediment Oxygen Demand Within an Instream Swamp in Southern Georgia: Implications for Low Dissolved Oxygen Levels in Coastal Blackwater Streams. Journal of the American Water Resources Association (JAWRA) 45(6):1493‐1507. Abstract: Sediment oxygen demand (SOD) is considered a critical and dominant sink for dissolved oxygen (DO) in many river systems including blackwater streams and is often poorly investigated or roughly estimated in oxygen budgets. The purposes of this study are to (1) characterize and document the magnitude and variability of SOD in representative instream swamps found on the Georgia Coastal Plain; (2) predict SOD from more readily measured parameters such as soil, sediment, and litter organic carbon; and (3) obtain an accurate representation of SOD values within this understudied habitat to help improve water quality models and the continued development of DO as an appropriate water quality standard. Results show SOD rates ranging from 0.491 to 14.189 g O2/m2/day, up to 18 times higher than values reported for southeastern sandy‐bottomed streams and suggest that instream swamps are repositories of large amounts of organic matter and are thus areas of intense oxygen demand and a major factor in determining the oxygen balance of the watershed as a whole. These areas of intense oxygen demand in relatively unimpacted areas indicate that low DO concentrations may be a natural phenomenon. SOD rates were significantly correlated (alpha = 0.05) with a number of sediment parameters, with organic carbon and total organic carbon being the best predictors of SOD rate. When developing water quality models, managers should pay closer attention to the influence of SOD as it plays a critical role in determining DO levels within instream swamps and the river system.  相似文献   

16.
Water quality and restoration in a coastal subdivision stormwater pond   总被引:1,自引:0,他引:1  
Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to a number of water quality problems including high nutrient, chemical contaminant, and bacterial levels. This study examined the interaction between land use and coastal pond water quality in a South Carolina residential subdivision pond. Eutrophic levels of chlorophyll and phosphorus were present in all seasons. Harmful cyanobacterial blooms were prevalent during the summer months. Microcystin toxin and fecal coliform bacteria levels were measured that exceeded health and safety standards. Low concentrations of herbicides (atrazine and 2,4-D) were also detected during summer months. Drainage from the stormwater pond may transport contaminants into the adjacent tidal creek and estuary. A survey of residents within the pond's watershed indicated poor pet waste management and frequent use of fertilizers and pesticides as possible contamination sources. Educational and outreach activities were provided to community members to create an awareness of the water quality conditions in the pond. Pond management strategies were then recommended, and selected mitigation actions were implemented. Water quality problems identified in this study have been observed in other coastal stormwater ponds of varying size and salinity, leading this project to serve as a potential model for coastal stormwater pond management.  相似文献   

17.
ABSTRACT: Nine surface water‐quality variables were analyzed for trend at 180 Virginia locations over the 1978 to 1995 period. Median values and seasonal Kendall's tau, a trend indicator statistic, were generated for dissolved oxygen saturation (DO), biochemical oxygen demand (BOD), pH (PH), total residue (TR), nonfilterable residue (NFR), nitrate‐nitrite nitrogen (NN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and fecal coliform (FC) at each location. Each location was assigned to one of four physiographic regions, and mean state and regional medians and taus were calculated. Widespread BOD and NFR improvements were detected and FC improvements occurred in the state's western regions. TR and TKN exhibited predominantly increasing trends at locations throughout the state. BOD, TKN, NFR, and TR medians were higher at coastal locations than in other regions. NN, TKN, and TR exhibited predominantly increasing trends in regions with high median concentrations, while declining trends predominated in regions with relatively high BOD, FC, and NFR medians. Appalachian locations exhibited the greatest regional water‐quality improvements for BOD, FC, NFR, and TKN. Factors responsible for regional differences appear to include geology, land use, and landscape features; these factors vary regionally.  相似文献   

18.
ABSTRACT: The Oregon Water Quality Index (OWQI) is a single number that expresses water quality by integrating measurements of eight water quality variables (temperature, dissolved oxygen, biochemical oxygen demand, pH, ammonia+nitrate nitrogen, total phosphorus, total solids, and fecal coliform). Its purpose is to provide a simple and concise method for expressing the ambient water quality of Oregon's streams for general recreational use, including fishing and swimming. The OWQI, originally developed in the 1970s, has been updated based upon improved understanding about water quality behavior. This report describes the historical basis of the OWQI and defines the improved design of the present OWQI. The index allows users to easily interpret data and relate overall water quality variation to variations in specific categories of impairment. This report demonstrates the value of the OWQI in presenting spatial and temporal water quality information. The OWQI improves comprehension of general water quality issues, communicates water quality status, and illustrates the need for and effectiveness of protective practices.  相似文献   

19.
ABSTRACT: As a part of a water quality survey of the Spoon River, Illinois, algal genera were identified and their densities were enumerated. Weekly samples were collected at five stations starting on June 1, 1971. This report presents the first year's results. Algal densities for each station were found to be distributed geometrically normal. Total algal densities increased as water progressed downstream. Although water temperature has been observed to be an important factor affecting the density and the composition of algae in streams, attempts to correlate algal densities with temperatures for the Spoon River were not fruitful. Correlations of algal densities with dissolved oxygen, flow, and coliform densities also could not be made. The dominant genera observed were Cyclotella, Navicula, Scenedesmus, and Euglena. On the average diatoms accounted for 87% of all algae counts. The average diversity indices varied about 1.0 to 1.5 for five stations. There did not appear to be any advantage in the use of diversity index over that of algal density and genera richness in characterizing algae in the Spoon River.  相似文献   

20.
A nonstationary time-series model is used to examine the changes occurring at sampling stations on the Chicago Sanitary and Ship Canal. Using data from upstream sampling sites, downstream levels of dissolved oxygen, total dissolved solids, nitrates and nitrites, and ammonia are accurately predicted. The method is simple, insensitive to extreme values, and responsive to changes in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号