首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用人工模拟降雨和室内分析相结合的方法,研究了黄土区不同耕作措施对降雨入渗的影响。结果表明:①不同耕作管理措施对降雨入渗的影响效用不同,在相同雨强和坡度下,降雨入渗速率表现为:耙耱地〉人工掏挖〉直线坡,在中小雨强和较短滞后情况下,这种情况表现更为显著;②不同耕作管理措施对降雨产流的影响效用不同,在相同雨强和坡度下,产流滞后表现为:耙耱地〉人工掏挖〉直线坡,在中小雨强和较短滞后情况下,这种情况表现更为显著;③根据水量平衡原理,得出了不同耕作管理措施不同坡度下入渗及产流滞后随雨强的变化关系式。上述结果为黄土高原坡耕地水土流失的治理和管理,提供了一定的理论依据。  相似文献   

2.
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.  相似文献   

3.
ABSTRACT: Infiltration processes at the plot scale are often described and modeled using a single effective hydraulic conductivity (Kg) value. This can lead to errors in runoff and erosion prediction. An integrated field measurement and modeling study was conducted to evaluate: (1) the relationship among rainfall intensity, spatially variable soil and vegetation characteristics, and infiltration processes; and (2) how this relationship could be modeled using Green and Ampt and a spatially distributed hydrologic model. Experiments were conducted using a newly developed variable intensity rainfall simulator on 2 m by 6 m plots in a rangeland watershed in southeastern Arizona. Rainfall application rates varied between 50 and 200 mm/hr. Results of the rainfall simulator experiments showed that the observed hydrologic response changed with changes in rainfall intensity and that the response varied with antecedent moisture condition. A distributed process based hydrologic simulation model was used to model the plots at different levels of hydrologic complexity. The measurement and simulation model results show that the rainfall runoff relationship cannot be accurately described or modeled using a single Kg value at the plot scale. Multi‐plane model configurations with infiltration parameters based on soil and plot characteristics resulted in a significant improvement over single‐plane configurations.  相似文献   

4.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

5.
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.  相似文献   

6.
Soil loss and surface runoff patterns were studied in erosion plots developed on manmade steep slopes (60 percent) over three years (1997–2000) in which rainfall ranged from 1338.4 to 1429.2 mm/year. Surface runoff and soil loss was examined under three different rainfall intensity classes. Runoff was mainly controlled by the rainfall distribution pattern on the seasonal scale. The soil loss was influenced by runoff during the first year. Both soil loss and runoff were reduced due to bioengineering measures in the first year irrespective of species planted. In the third year, combined effects of growth of grasses on protected plots, soil compaction and sediment exhaustion was noticed on runoff and soil loss. This was reflected by reduction in the runoff and soil loss from untreated and treated plots. In the high intensity class, reduction in runoff in treated plots was about 50 percent in three years and reduction in soil loss ranged between 94–95 percent in all plots. Physical treatment with brushwood structures was more efficient in erosion control in the low intensity class.  相似文献   

7.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

8.
ABSTRACT: The objectives of this paper were to test the ability of various design storm distributions to simulate the actual rainfall pattern and to compare the runoff rates used in the design of stormwater management devices in the State of Florida using continuous simulation approach. The analyses were performed for four gaged stations to evaluate the applicability of design storm distributions in different parts of the State of Florida. The approach used in this study compared the peak runoff rates from design storms based on the various distributions to those that would result from actual rainfall events. A series of continuous runoff rates were developed through the use of actual fifteen-minute recorded rainfall data, Horton type infiltration decay and recovery rate, and a continuous simulation model. The runoff rates were analyzed using frequency distributions to obtain peak runoff rates associated with different return periods based on the assumption that the continuous simulation approach closely predicts the actual runoff rates from the gaged stations. The results show that the behavior of the design storm distributions varies for different watershed characteristics in different parts of the state. The study also suggests that in general the Florida Department of Transportation and the Suwanne River Water Management (FDOT/ SRWMD) distributions appeared to agree with the continuous simulation results.  相似文献   

9.
Infiltration models are based on physical characteristics of the soil and initial soil moisture. For a given soil it is based on the initial soil moisture distribution. A computer simulation model for flood runoff systems (FH-Model) was used to analyze 39 sets of rainfall-runoff data on four small watersheds ranging in size from 17 to 342 square kilometers located in the Yamaska River basin in Quebec. From these analyses, parameters and coefficients have been determined for a water loss (infiltration) equation. A method for determining the loss parameters, using a nonlinear least square curve fitting technique, is presented. Expressions were made to relate the loss parameters to antecedent precipitation. The equations were tested on 11 storm rainfall and runoff events on a watershed located in the same region and close agreements were found.  相似文献   

10.
This study tests the applicability of the curve number (CN) method within the Soil and Water Assessment Tool (SWAT) to estimate surface runoff at the watershed scale in tropical regions. To do this, surface runoff simulated using the CN method was compared with observed runoff in numerous rainfall‐runoff events in three small tropical watersheds located in the Upper Blue Nile basin, Ethiopia. The CN method generally performed well in simulating surface runoff in the studied watersheds (Nash‐Sutcliff efficiency [NSE] > 0.7; percent bias [PBIAS] < 32%). Moreover, there was no difference in the performance of the CN method in simulating surface runoff under low and high antecedent rainfall (PBIAS for both antecedent conditions: ~30%; modified NSE: ~0.4). It was also found that the method accurately estimated surface runoff at high rainfall intensity (e.g., PBIAS < 15%); however, at low rainfall intensity, the CN method repeatedly underestimated surface runoff (e.g., PBIAS > 60%). This was possibly due to low infiltrability and valley bottom saturated areas typical of many tropical soils, indicating that there is scope for further improvements in the parameterization/representation of tropical soils in the CN method for runoff estimation, to capture low rainfall‐intensity events. In this study the retention parameter was linked to the soil moisture content, which seems to be an appropriate approach to account for antecedent wetness conditions in the tropics.  相似文献   

11.
基于GIS的数字化水文过程模拟研究   总被引:1,自引:0,他引:1  
在传统水文模型中,一般只能通过降水、蒸发、下渗、气温的输入模拟流量的变化,流域下垫面因素对径流的影响在径流模型中视为“灰箱”。地理信息系统技术的引入。把地面空间特性数字化。利用地形图。土壤分布图、土地利用图、土湿等资料模拟下垫面的地质地貌,把河道、流域的土壤植被等地理因素数字化应用到产汇流理论中。“灰箱”变为“白箱”。为流域研究提供了一种新的思维方法。  相似文献   

12.
Rainfall simulation experiments were conducted on annual grassland and coastal sage scrub hillslopes to determine the quantities of C and N removed by surface runoff in sediment and solution. Undisturbed coastal sage scrub soils have very high infiltration capacities (> 140 mm h(-1)), preventing the generation of surface runoff. Trampling disturbance to the sage scrub plots dramatically reduced infiltration capacities, increasing the potential for surface runoff and associated nutrient loss. Infiltration capacities in the grassland plots (30-50 mm h(-1)) were lower than in the sage scrub plots. Loss rates of dissolved C and N in surface runoff from grasslands were 0.5 and 0.025 mg m(-2) s(-1) respectively, with organic N accounting for more than 50% of the dissolved N. Total dissolved losses with simulated rainfall were higher than losses in simulations with just surface runoff, demonstrating the importance of raindrop impact in transferring solutes into the flow. Experimental data were incorporated into a numerical model of runoff and sediment transport to estimate hillslope-scale sediment-bound nutrient losses from grasslands. According to the model results, sediment-bound nutrient losses are sensitive to the density of vegetation cover and rainfall intensity. The model estimates annual losses in surface runoff of 0.2 and 0.02 g m(-2) for sediment-hound C and N, respectively. The results of this study suggest that conversion of coastal sage scrub to annual grasslands increases hillslope nutrient losses and may affect stream water quality in the region.  相似文献   

13.
ABSTRACT: Two dimensional sliding polynomials were adapted to pattern analysis of watershed monthly rainfall and runoff. Contours of runoff in the two-dimensional space of time and rainfall are constructed on a grid of 16 nodes whose values are determined by least squares. This method is form free, hence derived patterns are not biased to selected functional forms, but can directly represent the smoothed data. Values of the nodes are localized averages of the data constrained by required mathematical continuity across the grid of values. An advantage of the method is that the standard deviation can be calculated for each node, thus producing patterns of uncertainty of the deterministic component revealed by the data.  相似文献   

14.
ABSTRACT: Understanding the hydrologic processes of rangeland plant communities is essential to determine if water augmentation through shrub management is feasible. Vegetation manipulation studies are costly, difficult to accurately replicate, and often require more than 10 years to determine treatment effect on the water budget. If properly applied, hydrologic simulation models are an attractive alternative for assessing vegetation manipulation practices. The ERHYM-II model was evaluated to determine if it was capable of simulating the water balance for honey mesquite shrub clusters, grass interspaces, and bare soil in south Texas. The simulated water budget was within 2 percent of the measured evapotranspiration for the shrub clusters and grass interspaces. The model underestimated the number of runoff events and overestimated runoff volume for the grass interspace and shrub clusters. Simulated runoff was overestimated by approximately twofold for the grass interspace and threefold for the shrub clusters. Although simulated runoff was substantially overestimated, observed and simulated runoff only accounted for 3 to 6 percent of annual rainfall for the grass and shrub dominated areas, respectively. Simulated evapotranspiration was underestimated by 18 percent and soil water content was overestimated by 82 percent for the bare soil. The model underestimated evapotranspiration for the bare soil as a result of restricting evaporative losses to the first soil layer. Based on our analysis, the ERHYM-II model has the potential for simulating the annual water balance for semiarid rangeland plant communities where runoff and deep drainage are limited components of the water balance.  相似文献   

15.
Runoff was measured from seven plots with different slopes nested in Tuanshangou catchment on the Loess Plateau to study effect of slopes on runoff in relation to rainfall regimes. Based on nine years of field observation and K-mean clusters, 84 rainfall events were grouped into three rainfall regimes. Rainfall regime A is the group of events with strong rainfall intensity, high frequency, and short duration. Rainfall regime C consists of events with low intensity, long duration, and infrequent occurrence. Rainfall regime B is the aggregation of events of medium intensity and medium duration, and less frequent occurrence. The following results were found: (1) Different from traditional studies, runoff coefficient neither decreased nor increased, but presented peak value on the slope surfaces; (2) For individual plot, runoff coefficients induced by rainfall regime A were the highest, and those induced by rainfall regime C were the lowest; Downslope, the runoff coefficients induced by three rainfall regimes presented the same changing trend, although the peak value induced by regime A occurred on a shorter slope length compared to those by regime B and C; (3) Scale effect on runoff induced by rainfall regime A was the least, and that induced by rainfall regime C was the largest. These results can be explained by the interactions of crusting, soil moisture content, slope length and gradient, and erosion units, etc., in the context of different rainfall regimes.  相似文献   

16.
ABSTRACT. A mathematical model to predict water quality in a surface-groundwater system is under development. This project is being sponsored by the Environmental Protection Agency. The ultimate goal of this study is to obtain cause and effect relationships between pollutant sources and the ensuing concentrations at different locations in a basin. Several programs are used to model the various hydrologic processes occurring in nature, namely: rainfall, runoff, flow in surface bodies of water, infiltration, and groundwater flow. At every time step in the simulation, the water quantity computations for the above hydrologic models are performed first. Subsequently, the results of these computations, typically in the form of flow velocities, are used as input to the water quality calculations. The water quality routines involve the modeling of the associated physical, chemical, and biological processes. In this study, emphasis is being placed on pollution in agricultural areas. Accordingly the Lake Apopka basin in Central Florida is being used as the application site.  相似文献   

17.
ABSTRACT A synthetic storm rainfall hyetograph for a one-year design frequency is derived from the one-year intensity-duration curve developed for Cincinnati, Ohio. Detailed rainfall data for a three-year period were collected from three raingages triangulating the Bloody Run Sewer Watershed, an urban drainage areas of 2380 acres'in Cincinnati, Ohio. The advancement of the synthetic storm pattern is obtained from an analysis of the antecedent precipitation immediately preceding the maximum period of three selected durations. Rains which produced excessive runoff at least for some duration were considered only. The same approach can be used for other design frequencies. The purpose of this study is to provide synthetic storm hyetographs to be used as input in deterministic mathematical models simulating urban storm water runoff for the design, analysis and possible surcharge prediction of sewer systems.  相似文献   

18.
19.
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   

20.
Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号