首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azizullah A  Richter P  Häder DP 《Chemosphere》2011,84(10):1392-1400
Synthetic detergents are among the commonly used chemicals in everyday life. Detergents, reaching aquatic environments through domestic and municipal wastewater, can cause many different effects in aquatic organisms. The present study was aimed at the toxicity evaluation of a commonly used laundry detergent, Ariel, using the freshwater flagellate Euglena gracilis as a biotest organism. Different parameters of the flagellate like motility, swimming velocity, cell shape, gravitactic orientation, photosynthesis and concentration of light harvesting pigments were used as end points for the toxicity assessment. No Observed Effect Concentration (NOEC) and EC50 values were calculated for the end point parameters at four different incubation times, i.e. 0, 6, 24 and 72 h. After 72 h incubation, swimming velocity of the cells was found to be the most sensitive parameter giving NOEC and EC50 values of 10.8 and 34 mg L−1, respectively. After 72 h exposure to the detergent, chlorophyll a and total carotenoids were significantly decreased in cultures treated with Ariel at concentrations of 50 mg L−1 and above while chlorophyll b significantly decreased at concentrations above 750 mg L−1. The maximum inhibitory effect on the quantum yield of photosystem II was observed after 24 h exposure and thereafter a recovery trend was observed. Motility, gravitaxis and cell shape were strongly impaired immediately upon exposure to the detergent, but with increasing exposure time these parameters showed acclimatization to the stress and thus the NOEC values obtained after 72 h were higher than those immediately after exposure.  相似文献   

2.
Dai J  Wang C  Shang C  Graham N  Chen GH 《Chemosphere》2012,87(4):362-368
Fullerenes are set to be produced on an industrial scale in anticipation of their wide applications. This calls for research on their environmental and health impacts. This study investigates and compares the cell toxicity of different aqueous fullerene aggregates. Popular C60 dispersal methods were used to prepare four types of nC60 aggregates. These aggregates were tested against the indicator species Escherichia coli (E. coli) AMC 198. With aggregates of around 150 nm in diameter, the THF/nC60 suspension was very toxic and gave rise to a half maximal effective concentration (EC50) of 0.54 mg L−1 in E. coli. By contrast, the Tol/nC60 suspension exhibited a cytoprotective role while the Aqu-N2/nC60 and Aqu-O2/nC60 suspensions enhanced the metabolism of E. coli. Although some toxicants, such as THF and THF-peroxide, were introduced into the THF/nC60 suspension during the dispersion, the toxicity of nC60 itself cannot be neglected.  相似文献   

3.
Cell lines of Etroplus suratensis established in our laboratory were evaluated for their potential use as screening tools for the ecotoxicological assessment of tannery effluent. The cytotoxic effect of tannery effluent in three cell lines derived from eye, kidney and gill tissue of E. suratensis was assessed using multiple endpoints such as Neutral Red (NR) assay, Coomassie Blue (CB) protein assay and Alamar Blue (AB) assay. Acute toxicity tests on fish were conducted by exposing E. suratensis for 96 h to tannery effluent under static conditions. The toxic effect of tannery effluent on the survival of fish was found to be concentration and time dependent. The tannery effluent at the concentration of 15% caused 100% mortality at 96 h whereas the lower concentration (0.5%) caused 13.33% mortality. The cytotoxicity of tannery effluent was found to be similar in the three cell lines tested, independent of the toxic endpoints employed. EC50 values, the effective concentration of tannery effluent resulting in 50% inhibition of cytotoxicity parameters after 48 h exposure to tannery effluent were calculated for eye, kidney and gill cell lines using NR uptake, AB and cell protein assays. Statistical analysis revealed good correlation with r2 = 0.95-0.99 for all combinations between endpoints employed. Linear correlations between each in vitro EC50 and the in vivo LC50 data, were highly significant p < 0.001 with r2 = 0.977, 0.968 and 0.906 for AB50, NR50, and CB50, respectively.  相似文献   

4.
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L−1, LC50 96 h for Chironomus xanthus of 2.67 μg L−1 and LC50 48 h for Danio rerio of 33 μg L−1.  相似文献   

5.
6.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

7.
The toxicological interaction of perfluorooctane sulphonic acid (PFOS) with the chlorinated pollutants triclosan and 2,4,6-trichlorophenol and the lipid regulators gemfibrozil and bezafibrate was evaluated using the combination index-isobologram equation. The endpoint for bioassays was the growth rate inhibition of the green alga Pseudokirchneriella subcapitata. The results showed that most of the binary combinations assayed exhibited antagonism at all effect levels. The addition of a third component induced a less antagonistic or even synergistic behaviour. This was particularly marked for the ternary mixture of triclosan and 2,4,6-trichlorophenol with PFOS, for which synergism was very strong at all effect levels, with a combination index as low as 0.034 ± 0.002 at EC50 for the mixture. The results obtained indicate that the evaluation of mixture toxicity from single component data using the concentration addition approach could severely underestimate combined toxicity.  相似文献   

8.
Canopies of adult European beech (Fagus sylvatica) and Norway spruce (Picea abies) were labeled with CO2 depleted in 13C to evaluate carbon allocation belowground. One-half the trees were exposed to elevated O3 for 6 yrs prior to and during the experiment. Soil-gas sampling wells were placed at 8 and 15 cm and soil CO2 was sampled during labeling in mid-late August, 2006. In beech, δ13CO2 at both depths decreased approximately 50 h after labeling, reflecting rapid translocation of fixed C to roots and release through respiration. In spruce, label was detected in fine-root tissue, but there was no evidence of label in δ13CO2. The results show that C fixed in the canopy rapidly reaches respiratory pools in beech roots, and suggest that spruce may allocate very little of recently-fixed carbon into root respiration during late summer. A change in carbon allocation belowground due to long-term O3 exposure was not observed.  相似文献   

9.
A new mathematical model has been developed that expresses the toxicities (EC50 values) of a wide variety of ionic liquids (ILs) towards the freshwater flea Daphnia magna by means of a quantitative structure-activity relationship (QSAR). The data were analyzed using summed contributions from the cations, their alkyl substituents and anions. The model employed multiple linear regression analysis with polynomial model using the MATLAB software. The model predicted IL toxicities with R2 = 0.974 and standard error of estimate of 0.028. This model affords a practical, cost-effective and convenient alternative to experimental ecotoxicological assessment of many ILs.  相似文献   

10.
Hu J  Wang D  Wang J  Wang J 《Chemosphere》2012,89(5):536-541
Although engineered nanoparticles (NPs) could negatively impact environmental organisms, the synergistic effect of NPs and other toxic substances, which could be more significant than that of NP alone, have seldom been examined. The effect of two common NPs, nano-CeO2 and nano-TiO2, on the toxicity of Pb was evaluated using Ceriodaphnia dubia (C. dubia) as the model organism. Standard EPA procedures were followed in the toxicity evaluation. The toxicity of bare NPs (without Pb) was first evaluated and safe doses (levels without causing lethal effect) of NPs were used in the synergistic studies. It was found that the overall toxicity of Pb in the system containing NPs was greater than that of Pb alone, as indicted by the reduced median lethal concentration (LC50) of soluble Pb. The sorption of Pb onto the NP, and the uptake of NPs in the gastrointestinal tract of C. dubia were validated. Therefore, the uptake of Pb-loaded NPs increased the exposure of C. dubia to Pb, resulting in the enhanced toxicity. Reducing the solution pH could shift Pb speciation and enhance the overall toxicity of Pb, with or without the presence of NPs.  相似文献   

11.
The pharmaceutical diclofenac (DCF) is released in considerably high amounts to the aquatic environment. Photo-transformation of DCF was reported as the main degradation pathway in surface waters and was found to produce metabolites with enhanced toxicity to the green algae Scenedesmus vacuolatus. We identified and subsequently confirmed 2-[2-(chlorophenyl)amino]benzaldehyde (CPAB) as a transformation product with enhanced toxicity using effect-directed analysis. The EC50 of CPAB (4.8 mg/L) was a factor of 10 lower than that for DCF (48.1 mg/L), due to the higher hydrophobicity of CPAB (log Kow = 3.62) compared with DCF (log Dow = 2.04) at pH 7.0.  相似文献   

12.
13.
Molting in crustaceans is an important endocrine-controlled biological process that plays a critical role in growth and reproduction. Many factors can affect this physiological cycle in crustaceans including environmental stressors and disease agents. For example the pathology of Taura Syndrome Virus (TSV) of shrimp is closely related to molting cycle. Similarly, endosulfan, a commonly used pesticide is a potential endocrine disruptor. This study explores interrelationships between pesticide exposure, virus infection and their interactions with physiology and susceptibility of the shrimp. Litopenaeus vannamei (Pacific white shrimp) were challenged with increasing doses of endosulfan and TSV (TSV-C, a Belize reference strain) to determine the respective median lethal concentrations (LC50s). The 96-h endosulfan LC50 was 5.32 μg L−1, while the 7-d TSV LC50 was 54.74 mg L−1. Subsequently, based on their respective LC50 values, a 20-d interaction experiment with sublethal concentrations of endosulfan (2 μg L−1) and TSV (30 mg L−1) confirmed a significant interaction (p < 0.05, χ2 = 5.29), and thereby the susceptibility of the shrimp. Concurrently, molt-stage of animals, both at the time of exposure and death, was compared with mortality. For animals challenged with TSV, no strong correlation between molt-stage and mortality was observed (p > 0.05). For animals exposed to endosulfan, animals in the postmolt stage were shown to be more susceptible to acute toxicity (p < 0.05). For animals exposed to both TSV and endosulfan, interference of endosulfan-associated stress lead to increasingly higher susceptibility at postmolt (p < 0.05) during the acute phase of the TSV disease cycle.  相似文献   

14.
By using Caenorhabditis elegans (C. elegans) as a model animal, the present work is aimed to evaluate the acute toxicity of imidazolium-based bromide Ionic Liquids (ILs), and to elucidate the underlying mechanisms involved. Firstly, 24-h median lethal concentration (LC50) for eight ILs with different alkyl chain lengths and one or two methyl groups in the imidazolium ring were determined to be in a range of 0.09–6.64 mg mL−1. Four ILs were selected to investigate the toxic mechanisms. Mortality, levels of reactive oxygen species (ROS), lipofuscin accumulation and expression of superoxide dismutase 3 in C. elegans were determined after exposed to ILs at sub-lethal concentrations for 12 h. A significant increase in the levels of these biomarkers was observed in accordance with the results of 12-h lethality assay. The addition of 0.5% dimethyl sulfoxide, which acts as a radical scavenger, remarkably rescued the lethality of C. elegans and significantly decreased the ROS level in C. elegans. Our results suggest that ROS play an important role in IL-induced toxicity in C. elegans.  相似文献   

15.
Roh JY  Choi J 《Chemosphere》2011,84(10):1356-1361
In this study, the effect of organophosphorous (OP) pesticide, fenitrothion (FT), on the non-target organism was investigated using the soil nematode, Caenorhabditis elegans. Toxicity was investigated on multiple biological levels, from organism to molecular levels, such as, immoblity, growth, fertility, development, acetyl cholinesterase (AChE) activity and stress-response gene expressions. FT may provoke serious consequences on the C. elegans population, as it induced significant developmental disturbance. As expected, FT exposure inhibits AChE activity of C. elegans. The increased expression of the cytochrome p450 family protein 35A2 (cyp35a2) gene was also observed in FT exposed worms. To experimentally demonstrate the relationships between organism-level effects and the cyp35a2 gene expression in FT-exposed C. elegans, the integration of the gene expression with biochemical-, and organism level endpoints were attempted using a C. eleganscyp35a2 RNA interference (RNAi) and cyp35a2 mutant (gk317). The 24 h-EC50s of C. elegans on FT exposure were in the order of cyp35a2 RNAi in cyp35a2 mutant (gk317) > cyp35a2 mutant (gk317) > cyp35a2 RNAi in wildtype (N2) > wildtype (N2). The higher EC50 values of cyp35a2 RNAi and cyp35a2 mutant (gk317) compared to that of wildtypeC. elegans strongly supported that cyp35a2 gene plays an important role in the toxicity of FT towards C. elegans. The experiments with cyp35a2 RNAi also indicated that the development disturbance and decreased AChE activity, which were observed in FT exposed wildtype C. elegans were significantly rescued in the cyp35a2 RNAi C. elegans. Overall results suggest that the cyp35a2 may be an important gene for exerting FT toxicity in C. elegans.  相似文献   

16.
Zheng W  Colosi LM 《Chemosphere》2011,85(4):553-557
Several classes of oxidative enzymes have shown promise for efficient removal of endocrine disrupting compounds (EDCs) that are resistant to conventional wastewater treatments. Although the kinetics of reactions between individual EDCs and selected oxidative enzymes are well documented in the literature, there has been little investigation of reactions with EDC mixtures. This makes it impossible to predict how enzyme-mediated treatment systems will perform since wastewater effluents generally contain multiple EDCs. This paper reports pseudo-first order rate constants for a model oxidative enzyme, horseradish peroxidase (HRP), during single-substrate (k1) and mixed-substrate (k1-MIX) reactions. Measured values are compared with literature values of three Michaelis-Menten parameters: half-saturation constant (KM), enzyme turnover number (kCAT), and the ratio kCAT/KM. Published reports had suggested that each of these could be correlated with HRP reactivity towards EDCs in mixtures, and empirical results from this study show that KM can be used to predict the sequence of EDC removal reactions within a particular mixture. We also observed that k1-MIX values were generally greater than k1 values and that compounds exhibiting greatest estrogenic toxicities reacted most rapidly in a given mixture. Finally, because KM may be tedious to measure for every EDC of interest, we have constructed a quantitative structure-activity relationship (QSAR) model to predict these values. This model predicts KM quite accurately (R2 = 89%) based on two molecular characteristics: molecular volume and hydration energy. Its accuracy makes this QSAR a useful tool for predicting which EDCs will be removed most efficiently during enzyme treatment of EDC mixtures.  相似文献   

17.
Two silver birch clones were exposed to ambient and elevated concentrations of CO2 and O3, and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO2 and O3 on stomatal conductance (gs), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O3 response in silver birch, while crown position and clone played only a minor role. Elevated CO2 reduced the gs, but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO2 and O3 were found. The infection biology of P. betulicola was not correlated with SD or gs, but it did occasionally correlate positively with the length of the guard cells.  相似文献   

18.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

19.
Chicu SA  Funar-Timofei S  Simu GM 《Chemosphere》2011,82(11):1578-1582
In this paper, a toxicity study for a series of anilides of Naphthol-AS type is presented. The toxicity of the model compounds was determined by using the Hydractinia echinata (Hydrozoa) test system. Conformational analysis of Naphthol-AS derivatives was performed to elucidate the possible enzymatic hydrolysis mechanism of these compounds. This mechanism occurs with different rates and always leads to a stoichiometric mixture of reaction products, consisting in the substituted amine and the corresponding α-hydroxy-carboxylic acid. With one exception, the toxicities of the reaction products are subadditive. Quite similar measured toxicity values, log(1/MRC50), led to their average calculated values, and thus to the establishment of class isotoxicity. This method represents a practical alternative useful for the reduction of experimental tests on animals to the lowest possible level, in accordance to the ‘3Rs’ (reduction, refinement and replacement) concept.  相似文献   

20.
Bioassays using Daphnia pulex and Moina micrura were designed to detect cyanobacterial neurotoxins in raw water samples. Phytoplankton and cyanotoxins from seston were analyzed during 15 months in a eutrophic reservoir. Effective time to immobilize 50% of the exposed individuals (ET50) was adopted as the endpoint. Paralysis of swimming movements was observed between ∼0.5-3 h of exposure to lake water containing toxic cyanobacteria, followed by an almost complete recovery of the swimming activity within 24 h after being placed in control water. The same effects were observed in bioassays with a saxitoxin-producer strain of Cylindrospermopsis raciborskii isolated from the reservoir. Regression analysis showed significant relationships between ET50vs. cell density, biomass and saxitoxins content, suggesting that the paralysis of Daphnia in lake water samples was caused by saxitoxins found in C. raciborskii. Daphnia bioassay was found to be a sensitive method for detecting fast-acting neurotoxins in natural samples, with important advantages over mouse bioassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号