首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
能源消费和CO2排放是综合反映生态环境建设及城乡融合发展的重要指标,透过能源消费和CO2排放及其时空变化,不仅可以检视人类活动及其行为是否符合环境安全与可持续发展要求,还可以检视城乡融合发展与区域协调发展是否处在预期状态。本文在对能源消费及CO2排放数据整理和计算的基础上,先后分析了北京能源消费总量及不同品种能源消费量变化、北京能源消费所形成的CO2排放总量、主要产业与分行业以及不同城区的CO2排放情况,最后针对"燕山石化"异地迁建、实施"交通节能降耗减排战略""将房山、顺义、通州和大兴作为全市节能降耗减排重点监管区"以及"将建筑节能和社区节能作为微观节能降耗减排重要领域"等提出了相应对策与建议。  相似文献   

2.
煤炭消费是我国SO2、NOx和颗粒物三大污染物排放的主要来源,世界上一半的煤炭在中国燃烧,废气量和污染物排放量巨大。相关行业的排放标准在逐步加严,而在排放标准限值固定条件下,废气排放量决定了污染物的排放总量。介绍了以钢铁和水泥工业为主的废气量减排技术,包括废气循环技术和废气梯度利用技术;并对其废气量减排潜力进行了分析。结果表明,通过废气量减排可有效降低污染物总量。  相似文献   

3.
文章为做好温室气体减排的前期基础研究工作,从乌鲁木齐市能源消耗现状出发,根据《IPCC指南》中的表观能源消耗量估算法及排放系数法,分别对煤炭、成品油和天然气消费所排放的CO2、CH4和N2O量进行测算和分析,结果表明:乌鲁木齐市能源部门温室气体排放量近几年增长非常迅速,且与能源消费量呈显著正相关;三大能源中,煤炭消费为温室气体排放的主要来源。  相似文献   

4.
苏州市的CO2排放量在逐年上升,CO2减排工作任务艰巨。开发无污染的新能源替代化石燃料是CO2减排的一种思路。苏州作为一个江南水乡城市,水资源丰富,水生植物生长旺盛。主要探讨了水生植物(包括藻类和水葫芦)生物能在苏州市CO2减排中的作用。通过粗略估算,藻类和水葫芦产生的年生物能(折算为标准煤)1 200.35万t,大约占苏州年总能耗的四分之一,即可以减少大约四分之一的CO2排放。因此,水生植物生物能在苏州市CO2减排中具有重要的作用。  相似文献   

5.
中国水泥工业CO2排放现状及减排对策   总被引:2,自引:0,他引:2  
水泥工业是中国制造业中温室气体CO2的主要排放源,因此,根据水泥生产的基本原理和工艺特点,建立了CO2排放的数学模型并确定排放强度,计算了2001—2010年中国水泥工业CO2的排放量,分析了影响CO2排放量的主要因素及其发展趋势,并提出水泥工业CO2减排对策.结果表明,中国水泥工业CO2排放总量逐年增长,与水泥产量和单位产品原料、燃料消耗定额呈线性关系;在CO2排放总量中,原料煅烧和燃料燃烧阶段的排放量分别占49%和51%;"十一五"期间单位水泥产品CO2排放强度由0.69t.t-1下降到0.65t.t-1.万元GDPCO2排放量呈下降趋势,2008年达到最低值为0.3054t,平均每年万元GDPCO2排放量下降10.69%,说明水泥工业10年间实施节能降耗、资源循环利用、提高经济效益等措施对于减少CO2排放具有明显效果.  相似文献   

6.
工业是城市能源活动CO2排放的最重要部门,核算工业部门CO2排放以及合理的减排情景分析是城市碳减排的关键内容。该研究以区域终端消费电热力产品CO2排放系数为基础,建立终端能源消费CO2排放核算方法,比较了终端法和直接法核算2007年厦门工业能源消费CO2排放量、行业分布和排放强度的差异,分析了影响工业CO2排放的主要因子和各情景下工业CO2减排潜力。研究结果表明:2007年厦门市工业终端能源消费CO2排放量为7 940 kt CO2,排放强度为1.182 t CO2/万元GDP,排放强度较高的行业依次为化学纤维制造业、非金属矿采选业、化学原料及化学制品制造业、电力和热力的生产和供应业等行业,影响排放强度的主要因子为行业能源消费强度、电力能源结构、工业能源结构和工业行业结构;采用终端法核算的厦门工业能源消费CO2排放行业结构与直接法核算结果有明显的差异。通过建立的CO2减排潜力估算方法,预测在规划情景和理想情景下,2015年厦门市工业CO2排放强度将分别下降30.4%和41%,在工业增加值为1 500亿元情景下,CO2排放总量分别为12 358和10 475.9 kt CO2,比2007年增长55.4%和31.7%。  相似文献   

7.
中国大陆CO人为源排放清单   总被引:31,自引:9,他引:31  
在经济部门、燃料类型、燃烧方式/工艺技术3个层次对排放源进行划分的基础上,根据各类源的能源消耗/产品产量及相应的排放因子,建立了中国大陆2001年分省区CO人为源排放清单.结果表明,中国大陆2001年CO人为源排放量为1·5×108t.生物质、煤炭和汽油是CO排放的主要来源,分别占总排放的35·24%、31·67%和20·31%;CO主要来源于居民生活(32·15%)、工业燃烧(23·77%)和机动车排放(21·75%).CO排放的地区分布极不均衡,山东、河北、山西、辽宁等12个省区的年排放量在5·0×106t以上,集中了全国总排放的2/3;上海、北京和天津3市的年均排放强度最高(大于100t·km-2·a-1);而西藏、青海、新疆和内蒙古4个省区的CO排放强度均不足5t·km-2·a-1·  相似文献   

8.
上海市能源CO_2排放及节能减排的减碳效果分析   总被引:2,自引:2,他引:0  
以 2005 年为基准,采用 IPCC 清单指南推荐的方法测算了上海市能源活动产生的 CO2 排放清单。并采用情景分析方法,预测了高碳情景和低碳情景下上海市能源需求及相应的二氧化碳排放趋势,探讨了节能减排等低碳政策所产生的碳削减的潜力。研究表明,2005 年上海市能源活动所排放的 CO2 总量为 1.72 亿 t,其中,能源加工转换产生的 CO2 排放量为 7740 万 t,占排放总量的 44%;工业次之,占 30%;交通运输的排放比例为 16%。煤炭和石油的消费是导致 CO2 排放的主要原因,2005 年煤炭所带来的 CO2 排放量为1.10 亿 t,油品所产生的 CO2 排放量为 0.58 亿 t,分别占到能源活动 CO2 排放总量的 64.0%和 33.7%。 2005 年上海市人均 CO2 排放量为9.68 t/人,是世界平均水平的 2.4 倍,是中国平均水平的 3.8 倍。研究表明,在低碳政策下,上海能源需求将有所控制,到 2020 年全市能源需求总量为 1.6 亿 t 标煤, 比高碳情景节约 1.4 亿 t 标煤。节能减排政策还将使得全市能源活动 CO2 排放比高碳情景显著下降,到2020 年全市 CO2 排放量为 3.26 亿 t,比高碳情景减少 3.1 亿 t,低碳政策所产生的碳减排效益十分明显。  相似文献   

9.
天津市居民生活消费CO2排放估算分析   总被引:6,自引:1,他引:5       下载免费PDF全文
根据联合国政府间气候变化专门委员会(IPCC)碳排放计算指南(2006年版)中的计算公式和CO2排放系数缺省值,以居住综合消费碳排放、叠加交通消费碳排放计算模型为基础,应用碳排放系数法估算了2006~2008年天津市居民人均生活消费CO2排放量及其在总的能源消耗CO2排放量中所占比例.结果表明,2006~2008年天津市居民生活消费CO2排放量呈逐年上升趋势,2008年的排放量比2006年增加了13.7%.居民生活消费CO2排放在总的能源消耗CO2排放中所占比例整体呈上升趋势,并从产业结构和能源消费结构两个角度分析了导致这一现象的原因.  相似文献   

10.
基于2010年福建省CO2排放量,对人均CO2排放量和万元产值CO2排放量的区域分布格局及其成因进行了分析,并依据2000—2010年CO2排放量和经济发展数据,建立了福建省CO2排放量随人均GDP变化的环境学习曲线,据此分析了2005—2010年6个时段CO2减排潜力变化及其空间分布。结果表明:经济发展水平越高的地区,万元产值CO2排放的负荷越小,万元产值CO2减排的潜力也越小;反之,经济发展水平越低的地区,万元产值CO2排放的负荷越大,万元产值CO2减排的潜力也越大。  相似文献   

11.
为研究乌鲁木齐市散煤燃烧对大气污染物的贡献情况,根据实地调研收集到的散煤燃烧活动水平数据,利用排放因子法建立2015年乌鲁木齐市散煤燃烧PM2.5、SO2和NOx的排放清单,利用ArcGIS空间分析工具进行空间分布特征分析,使用蒙特卡罗方法进行不确定性分析.结果表明:2015年散煤燃烧排放PM2.5、SO2、NOx分别为1.70×104、4.13×104、2.80×103 t.PM2.5和SO2排放的主要贡献区域为乌鲁木齐县,分别占排放总量的27.35%和26.23%,这是由于乌鲁木齐县社区居民和大棚种植耗煤量较大所致;NOx排放的主要贡献区域为米东区,贡献率高达28.03%,这是因为米东区社区居民所用炉灶为手动炉排层燃炉灶,其排放因子较大所致.空间分布特征表明,污染物主要分布在米东区南部、沙依巴克区北部及乌鲁木齐县中部.不确定性分析表明,村庄、社区、大棚种植、商业和事业单位在95%的置信区间时不确定性分别为-69%~165%、-57%~116%、-68%~171%和-67%~165%.蒙特卡罗预测结果(平均值)高于排放清单的计算结果.研究显示,乌鲁木齐市散煤燃烧对污染物排放贡献较大,并且具有明显的季节性和区域性特征.   相似文献   

12.
利用2013年秋季(8─10月)多景镶嵌的高分辨率遥感卫星数据,解译得到2013年北京市平原区居住平房的空间分布及面积,并结合典型区实地调查,细化平房面积. 在此基础上,利用调查统计数据(包括平房面积、散煤与蜂窝煤用量等指标)估算了居住平房区散煤和蜂窝煤用量,并结合相关文献调研的无烟煤排放因子,测算北京平原区平房燃煤PM、SO2、NOx、PAHs、BC(黑碳)和OC(有机碳)的排放量. 结果表明:2013年在北京城市发展新区,居住平房分布较为集中,并且燃煤总量最大,达到225.3×104 t,特别是房山、顺义和通州,三者均在3.5×105 t以上;在城市拓展区,居住平房密度相对较小,但燃煤总量相对较大,为79.4×104 t. 北京市平原区(不包括核心区)居住平房燃煤消耗共排放PM、SO2、NOx、BC、OC、PAHs分别为 4 882.1、14 200.0、7 614.9、18.0、132.3和0.5 t. 位于北京西南、东南部的房山、大兴和通州等地大气污染排放水平较高,其中房山区的PM和NOx排放量最高,分别达到760.5和1 162.6 t. 针对城市发展新区和生态涵养区每年高达3.0×106 t的高用煤量和3 000 t以上颗粒物的高排放量,应加快煤改气和集中供热建设,进一步推广清洁能源.   相似文献   

13.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

14.
杨依然  李曼  吕卓  董广霞  王军霞 《环境工程》2020,38(11):6-11,202
煤炭是我国主要能源,分析煤炭消费变化趋势对于预测我国二氧化碳及大气污染物排放具有重要意义。基于全国环境统计调查数据,分析了2011—2018年主要城市煤炭消费的利用情况,利用热力聚类图对我国省会城市(含直辖市)聚类分析其工业源和生活源的煤炭消费趋势,并按东部、中部和西部城市进行煤炭消费的区域性对比。结论如下:通过聚类分析发现,位于同一簇的城市之间工业企业煤炭消耗总量的基数和变化趋势有一定的相似性;总体上,城市工业企业的煤炭消耗呈逐年递减趋势,东部城市煤炭消耗总量高于中部、西部城市煤炭消耗总量,东部城市煤炭消费量下降情况总体好于中部和西部城市;除北京等少数城市外,电力、热力生产和供应行业每年的煤炭消耗量基本变化不大;城市生活源煤炭消费量变化趋势总体呈逐年递减趋势,西部呈上升趋势,东部、中部城市呈下降趋势;东部城市中的城市总煤炭消费达峰情况优于中部、西部城市。  相似文献   

15.
利用2015~2017年8~9月2 m级高分辨率遥感影像,对北京市平原区平房面积和分布进行遥感监测,其中2017年增加北京周边地区(廊坊、保定)的监测,获取平房信息,并利用平房采暖面积调查、燃煤量入户抽样调查等技术手段,估算了北京及周边地区平房燃煤总量,同时结合排放因子,测算了燃煤PM2.5、SO2、NOx的排放量.结果表明2015~2017年,北京市平原区平房燃煤量大幅度下降,燃煤总量下降了75%,煤改电(气)措施效果显著.现阶段(2017年)北京城六区、南部平原城乡地区基本实现"无煤化",燃煤散烧主要集中在北部平原区,其中昌平、顺义区燃煤量均超过30万t,平谷、延庆区的燃煤量在15万t以上.从空间分布来看,2015年燃煤量空间呈环状分布,2016年呈半环状,燃煤集中在位于环面区域的昌平、顺义、通州、大兴区.2017年各区平房燃煤所产生的大气污染物排污量差别明显,其中昌平区的SO2和NOx排放量最高,分别为1113.3 t和279.2 t.2017年保定、廊坊市煤改清洁能源工作初见成效,但燃煤总量依然较大,煤质差、使用方式粗放,燃煤强度由北至南逐渐增大.保定、廊坊市平原区燃煤量分别约为1043万t和407万t.保定市近郊村庄燃煤量普遍较少,北市、南市和新市区村庄燃煤量均低于5万t.廊坊市平原区燃煤量空间分布较为平均,其中文安县平原区燃煤量最多,为69万t,大厂回族自治县燃煤量最低.  相似文献   

16.
通过对太原市2013年冬季和2014年夏季PM10、PM2.5、SO2和CO 24小时平均浓度实时数据的整理和分析,结果表明,冬季污染较夏季严重。冬季为采暖期,颗粒物、SO2和CO相互之间呈现较强的相关关系,污染物来源有着较高的同源性,区域采暖燃煤是区域大气污染的主导性影响因素;夏季为非采暖期,颗粒物、SO2和CO相互之间呈现较弱的相关关系,其污染来源有着较低的同源性,燃煤污染不是区域的主要污染因素,颗粒物、SO2和CO来源于不同行业的工业污染,同时城市机动车尾气也是PM2.5和CO的污染影响因素。  相似文献   

17.
根据水泥工业大气污染物排放的数学模型;测算2005年-2011年中国水泥工业二氧化碳(CO2)、氮氧化物(NO2)、二氧化硫(SO2)、颗粒物(PM)和氟化物(F)等污染物排放量,分析节能减排的效果并提出解决问题的对策。结果表明:水泥工业CO2排放量逐年增长,并且与水泥产量和单位产品综合能耗呈线性关系;原料煅烧和能源利用过程CO2排放量分别占56%和44%;单位水泥产品CO2排放强度由0.68 t·t-1下降到0.58 t·t-1,相当于每年节约标准煤682×104t、减少CO2排放共计1.03×108t。NO2排放量分别是SO2、PM、F的4、7、160倍。发展新型干法技术、建设烟气脱硝装置、协同处置固体废物是水泥工业未来节能减排的发展方向。  相似文献   

18.
太原市居民生活燃煤大气污染物排放清单研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了科学计算居民生活燃煤对大气污染物排放的贡献率,建立了太原市居民生活燃煤的大气污染物排放清单.利用高分辨率遥感卫星影像、DEM(数字高程模型)和GIS(地理信息系统)对太原市平房空间分布及面积进行了解译,得到2016年太原市平原、山区、城乡区域平房面积.对平原农村、山区农村、城中村典型区域进行实地调查,统计不同区域户均平房面积和生活燃煤使用量,估算得到了平原农村、山区农村、城中村的生活燃煤使用量.结合相关文献测算的排放因子,计算太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量.结果表明:2016年太原市有22.8×104户燃煤散烧居民,2016年燃煤消耗量为109.6×104 t,平原和城乡居民是主要的生活燃煤用户也是居民生活燃煤大气污染物的主要排放源;太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量分别为9 666.7、7 518.6、8 110.4、1 753.6、657.6、153 549.6、3 419.5、2 882.5 t;2016年太原市清徐县和太原市城区居民煤炭消耗量合计达97.9×104 t,占全年燃煤总消耗量的88%.研究显示,太原市应加快煤改气、煤改电和集中供热建设,进一步推广清洁能源以期减小居民生活燃煤大气污染.   相似文献   

19.
上海城市交通与机动车排气污染调查   总被引:12,自引:0,他引:12  
刘昶  徐渭芳 《上海环境科学》1999,18(12):554-557
上海市机动车保有量逐年增加,车辆的排气污染愈来愈严重,据调查,1997年机动画排放的CO,MNHC,NOX和PM分别达到58.6,9.08,6.20和0.23万吨。中心城区机动车排放的CO,NMHC和NOX污染物50%以上来自于小型车,是影响上海城区环境空气质量的主要污染源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号