首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Abstract

Levels of acephate (OrtheneR) and its principle metabolite, methamidophos, in/on greenhouse‐grown pepper and cucumber fruits and leaves in relation to the applied methamidophos were monitored. Dislodgeable and total residues of acephate and methamidophos were determined by gas‐liquid chromatography equipped with a flame ionization detector (GC‐FID) and were confirmed by nitrogen phosphorus detector (GC‐NPD). The dissipation curves of the residues followed first‐order kinetics (R2> 0.96). Initial residues of acephate on fruits varied between pepper (15.12 ppm) and cucumber (2.16 ppm) . Total residues in fruits and leaves determined at intervals following application revealed the greater persistence of acephate on pepper fruits (half‐life [t1/2] of 6 d) than on cucumber fruits (t1/2 was 3.7 d) . T1/2 values for the applied methamidophos were 4.7 and 5.3 d on pepper and cucumber fruits, respectively. Deacety‐lation of acephate (formation of its metabolite) was detectable 1 d following acephate treatment and reached a maximum of 2.05% of initial acephate residues 3 d after application on pepper fruits. On cucumber fruits, acephate metabolite reached a maximum of 2.12% one wk following application. No acephate residues were detected above the limit of detection of 0.001 ppm in pepper fruits 50 d following acephate application while its metabolite was detectable at that time (detectability limit was 0.0001 ppm).  相似文献   

2.
Persistence of carbaryl in canal water   总被引:2,自引:0,他引:2  
The presence of the insecticide carbaryl (Sevin) and its decomposition product 1-napthol was confirmed in irrigation and drainage canal water. However, their residues disappeared from the water 6 days after application.  相似文献   

3.
Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

4.
Acephate was incubated in distilled water of three different pH's at 37 degrees C for 7 days. Three hydrolytic products were formed: methamidophos, O,S-dimethyl phosphorothiolate (DMPT), and O-methylacetyl phosphoramidothiolate (OMPT). A single dose of acephate was also fed to mice, and their livers were excised and analyzed for metabolic products up to 30 hours. Three products were detected: methamidophos, DMPT, and S-methylacetyl phosphoramidothiolate (SMPT). The anticholinesterase properties of acephate, methamidophos, DMPT, SMPT, and OMPT were determined. Only acephate and methamidophos had measurable inhibitory effects on the mouse erythrocyte enzyme, methamidophos being about ten times more effective than acephate. The amount of methamidophos formed in the water and mouse liver was too low to have any direct effect on the toxicity of acephate. Acephate toxicity to aquatic insects would depend on its persistence in water, its uptake by the insects, its conversion to methamidophos, and the combined inhibitory effect of acephate and methamidophos on the cholinesterase enzyme. The toxicity of acephate to mammals would depend on the direct anticholinesterase effect of the chemical and to a small extent on methamidophos.  相似文献   

5.
Reductive degradation of carbaryl in water by zero-valent iron   总被引:6,自引:0,他引:6  
Reduction of carbaryl solution by zero-valent iron powder (ZVIP) was studied in a rotator batch system (70 rpm) in order to evaluate the utility of this reaction in remediation of carbamate contaminated water. Degradation with different amount of ZVIP: 0.01, 0.02, 0.03, 0.04 g/ml at pH 6.6 and at ambient temperature was investigated. The results show that the process exhibits a degradation rate appearing to be directly proportional to the surface contact area of ZVIP (325-mesh) with the carbaryl molecules. Three analytical techniques were used to monitor carbaryl degradation: (1) A UV-Vis diode array spectrophotometer was used to record all spectra. (2) A high performance liquid chromatography was used to separate by-products and examine the evolution of breakdown products. (3) A home-built spectrophosphorimeter that uses the solid surface room temperature phosphorescence (SSRTP) was employed to observe selectively the decline of the carbaryl concentration at different amount of ZVIP on Whatman no. 1 filter paper. Results show that the reducing degradation of carbaryl with ZVIP as the source of electrons is effective with a half-life close to several minutes.  相似文献   

6.
In the pioneer days, the main driving forces for research of organics in drinking water treatment (DWT) were human health risks and optimisation of technology. The focus was on natural organic matter (NOM) structure, disinfection by-products (DBPs) formation, NOM removal by means of coagulation, adsorption, and oxidation, and development of the most efficient water treatment trains. Surprisingly, after decades of research, rapid development of analytical techniques and progress in risk assessment, the same driving forces are still in the limelight — although the topics have changed slightly. The attention switched from trihalomethanes to a new generation of DBPs. The definition of hydrophilic/hydrophobic NOM depends on the technique used for characterisation. It has become evident that numerous organic compounds can threaten water supply sources. Some of them had been ignored or overlooked in the past, but have recently been detected by advanced analytical tools even in drinking water. Prioritisation becomes priority per se. As far as processes are concerned, mainstream research has been following three lines: fouling mechanisms, application of hybrid processes and interactions between synthetic organic chemicals, other water constituents and materials used in DWT. Significant development has been made in membrane technology. This paper presents a broad overview of the recent organics research. Although the state-of-the-art technologies seem to have an answer to each and every question raised, it is still necessary to deal with specific problems on a case-by-case basis mainly due to the unique nature of NOM and different xenobiotics that may appear in various types of waters. In the end, human health risk, which derives from the presence/absence of organics, is only the tip of the iceberg — underneath lies a whole new universe — the socio-economic aspect of water treatment and quality that deserves much more attention.  相似文献   

7.
Zhu L  Ma B  Zhang L  Zhang L 《Chemosphere》2007,69(10):1579-1585
In November 2005, an explosion occurred at a petrochemical plant of the Jilin Petrochemical Corporation in Jilin Province, China. A nearby water body was seriously polluted with a large spill of toxic substances made up of a mixture of benzene, aniline, and nitrobenzene (NB). To understand the long term impact of NB on public health and ecosystem around the Songhua River, it was necessary to investigate its fate in the environment. In this study, a microcosm was used to mimic the polluted water system and to study the transport and fate of NB in the river water body. The volatility and biodegradation of NB was investigated and a Markov model was applied to predict the fate of NB in the environment. The simulated results matched very well with the results obtained from the microcosm experiment. The model indicated that at room temperature and after around 500 h, there was only residual NB in the water and sediment. Most of the NB (around 82%) evaporated into the air and 18% was degraded by microorganisms.  相似文献   

8.
Oryzalin fate and transport in runoff water in Mediterranean vineyards   总被引:3,自引:0,他引:3  
An experimental study was conducted in a 91.4-ha Mediterranean vineyard catchment in southern France to characterize the fate and transport of oryzalin in runoff water and thus to assess the risk of contamination of surface waters. Oryzalin concentrations in soil were monitored on two fields, one no-till and one tilled from March 1998 to March 2000. Concentrations in solution and on solid phase of runoff water were measured at the outlets of both fields and the catchment. The droughts in the two summer periods reduced the dissipation of oryzalin and increased its field half-life up to 35 days. Consequently, oryzalin was detected throughout the year in runoff water, with maximum dissolved concentrations > 600 microg l(-1) at the field scale. Oryzalin transport essentially occurred in solution. At the no-till field, seasonal losses were 2.29% and 1.89% of the applied amount in 1998 and 1999, respectively. The corresponding values at the tilled field were 1.56% and 0.29%, since tillage reduced total losses by reducing surface runoff. At the catchment scale, oryzalin concentrations were smaller than those at the field scale, due to dilution effects and staggering of application. Large part of the overland flow from the fields reinfiltrated in the ditches before reaching the outlet of the catchment. As a result, seasonal oryzalin losses were <0.2% of the applied amount.  相似文献   

9.
乙酰甲胺磷对斜生栅藻的毒性及细菌降解研究   总被引:1,自引:0,他引:1  
采用血球计数法测定斜生栅藻细胞数目,研究了乙酰甲胺磷对斜生栅藻的毒性作用,并通过藻类培养液中接种经过筛选得到的乙酰甲胺磷高效降解菌测定其对乙酰甲胺磷毒性的去除影响。研究结果表明,乙酰甲胺磷对斜生栅藻的抑制中浓度(EC50)大于159 mg/L,急性毒性为低毒。但进一步研究发现,在7 d后,EC50为174.68 mg/L,明显低于24 h的1 128.57 mg/L,存在亚慢性毒性。通过藻类培养液接种高效降解菌Y-6,乙酰甲胺磷对藻类的生长抑制程度减轻。  相似文献   

10.
Abstract

Adult and larval insects from the terrestrial and aquatic environments were exposed to acephate. The chemical was more toxic to adult insects than to larvae, and was a poor insect cholinesterase inhibitor in vitro compared to methamidophos which was a much stronger inhibitor. Both acephate and methamidophos inhibited the adult cholinesterase in vitro much more strongly than they did the larval enzymes. Acephate was metabolized by the insects to methamidophos which did not appear to be the only metabolite, although no other metabolites were looked for. The cholinesterase of insects exposed to sublethal levels of acephate was inhibited, but this inhibition appeared to be due to the combined effect of acephate and methamidophos and not to any hypothetical substance with greater anticholinesterase activity. This was bourne out when acephate was incubated with mixed function oxidases (MFO). No activated product with potent anticholinesterase activity was identified. Methamidophos was not produced by the MFO system but by some other unidentified mechanism.  相似文献   

11.
茭白田坑面水和渗漏水中氮素变化动态研究   总被引:1,自引:0,他引:1  
茭白是黄浦江上游地区广泛种植的一种水田蔬菜.通过测坑定位试验,研究了茭白田坑面水和渗漏水中氮素变化动态和流失规律.结果表明,各处理茭白田坑面水中氮素形态以NH+4\|N为主,施肥后1~3 d,其占TN比例可达90%以上;渗漏水中氮素形态主要以NO-3\|N为主,施肥后呈现先上升后下降的趋势.通过增施有机肥、减少20%的无机氮肥用量可使坑面水TN减少20.74%,渗漏水中NO-3\|N减少16.10%,减少了氮素流失,且对茭白产量没有显著影响.、=  相似文献   

12.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

13.
This work examines the variation in removal efficiency of triclosan in wastewater treatment works in the United Kingdom between November 2003 and April 2004. Concentrations of triclosan were measured at set points within three different types of wastewater treatment works: rotating biological contactors, trickling filters, and activated sludge. Overall removal of triclosan through these plants ranged from 58 to 96% (rotating biological contactors), 86 to 97% (trickling filter), and 95 to 98% (activated sludge).  相似文献   

14.
Halogenated acetaldehydes: analysis, stability and fate in drinking water   总被引:1,自引:0,他引:1  
Koudjonou BK  LeBel GL 《Chemosphere》2006,64(5):795-802
In our previous studies, chloral hydrate has been the only chlorinated acetaldehyde determined in drinking water because authentic standards of other related haloacetaldehydes were not available. Recently, standards of dichloroacetaldehyde, bromochloroacetaldehyde, dibromoacetaldehyde, bromodichloroacetaldehyde, chlorodibromoacetaldehyde, and tribromoacetaldehyde have become available commercially. They were obtained and verified for purity and stability using a dual-column GC-ECD system. Each commercial standard was found to contain small amounts of the other target haloacetaldehydes (HAs). The stability of the HAs stock solutions was solvent dependent: in acetone, the brominated species partially degraded to bromoacetone, while all target HAs were stable in MTBE for up to 8 months. The analytical parameters, required for the quantification of HAs in water, were determined and used to evaluate the stability of the HAs in water. Under the conditions of the sampling protocol (field pH adjustment to pH 4.5 and storage at 4 degrees C), the target HAs were stable in water for up to 14 days. However, at typical drinking water pH and temperature conditions, the stability varied with the HA species, pH, temperature and storage period. The trihalogenated acetaldehydes degraded, in part, to their corresponding trihalomethanes (THMs) at increasing pH and temperature. Most target HAs were detected in drinking water samples collected from various Canadian drinking water systems, and the speciation was dependent on water parameters (e.g. bromide concentration) and treatment processes. From the water samples analysed, chloral hydrate ranged between 7% and 51% of the total HAs (w/w). The weigh ratio of total HAs to total THMs (10-46%) indicated that HAs contributed significantly to the pool of DBPs in drinking water.  相似文献   

15.
Alcock RE  Sweetman A  Jones KC 《Chemosphere》1999,38(10):2247-2262
An extensive and comprehensive literature review has been conducted for compounds which we hypothesise could be present in sludge and maintain their integrity following application to agricultural land. The following compounds have been selected for review; chlorinated paraffins, quintozene, brominated diphenyl ethers, polychlorinated naphthalenes, polydimethylsiloxanes, chloronitrobenzenes, and a range of biologically active and pharmaceutical compounds. All have received interest as a result of their persistence and/or toxicity in environmental media. Physicochemical property information has also been compiled and/or calculated. In this way, an accompanying paper will attempt to predict compound fate in waste water treatment plants (WWTPs) and assess likely transfers from soil/plants to grazing livestock. These papers describe a first attempt to predict the fate of these classes of compounds in the environment and prioritise those of greatest concern.  相似文献   

16.
Experiments were conducted to determine the factors responsible for the loss (adsorption, chemical hydrolysis, microbial degradation, etc.) of dichlorvos (2,2-dichlorovingl 0,0-dimethyl phosphate) in soil perfusion systems of Houston Black clay. The rate of disappearance from the perfusate (hence the rate of dichlorvos degradation in soil) was related directly to the presence of Bacilluscereus in the perfusion system, the pH of the system, and the extent of dichlorvos adsorption. Gas liquid chromatographic analyses of the perfusates showed that dichlorvos disappearance was rapid when B. cereus was added to a previously sterilized soil perfusion system (50% in 3.9 days). Under sterile conditions, 50% of the added dichlorvos was recovered after 10 days. When B. cereus was added to a mineral salts medium containing dichlorvos as sole ccrbon source, 49% of the initial dichlorvos concentration was degraded in 4 days. The organism was not capable of utilizing dichlorvos as a sole phosphorus source. Chemical hydrolysis of dichlorvos in aqueous, buffered, soil-free systems showed that hydrolysis did not occur in very acid systems (<pH 3.3), but increased with increasing pH values (26% in 4 days at pH 6.9), and was rapid at pH 9.3 (> 99% in 2 days). The extent of dichlorvos adsorption was determined by comparing the initial loss of dichlorvos in a sterile, soil-free extract solution with the initial loss in a sterile soil perfusion system. The rapid initial disappearance of dichlorvos in the presence of sterilized soil was attributed to soil adsorption of the pesticide. After 10 days both systems contained equal concentrations (50%) of dichlorvos. Non-biological mechanisms accounted for 70% of the total degradation of dichlorvos, while bacterial degradation accounted for 30% in the soil perfusion systems.  相似文献   

17.
A single tertiary isomer which is believed to be one of the major branched isomers of the isomeric nonylphenol was synthesized for use in investigations on its metabolism and estrogenicity in aquatic organisms. The physico-chemical properties of the isomer were determined to enable the prediction of its behaviour in aquatic environments. From laboratory investigations on its dissipation and distribution in lake water, which are reported in this paper, it was found that it had a half-life of dissipation of 38.1 days and 20.1 days in an open lake water and in an open lake water/ sediment system, respectively, and to be rapidly partitioned in to sediment giving a high concentration factor of 1.76 after 28 days with an initial dose concentration of 2.52 ppm. The main dissipation route was found to occur through volatilization and co-distillation. The isomer was, however, found to be resistant to biodegradation in both the lake water and sediment, showing only a slight 9% loss (after 56 days) and 4.2% loss (after 28 days), of the 14C-residues in lake water and lake water/sediment systems, respectively, by microbial activity. Transformation to other more polar metabolites possibly by hydroxylation was also found to be minimal in both lake water and sediment samples after 14 days by HPLC analysis. After 7 days, only 2.25 and 7.4% transformation to a more polar metabolite was detected in lake water and sediment samples, respectively.  相似文献   

18.
Rats excreted the 14C from a single oral dose of N-isopropyl-N-[14C]phenyloxamic acid [I, a soil metabolite from 2-chloro-N-isopropylacetanilide (propachlor)] in approximately equal quantities in the urine (49.2%) and feces (48.2%). A milking goat given daily oral doses of [14C]-I (1 mg of I three times daily) excreted more 14C in the feces (56.6%) than it excreted in the urine. From both species, I accounted for 97 to 100% of the urinary 14C, and all of the 14C that was extractable from the feces (73 to 75% of the 14C in feces was extractable with methanol). Goat milk samples collected 16 hr after the last dose contained no detectable 14C. Tissue residues of 14C were determined.  相似文献   

19.
The occurrence of cashmerane (DPMI), celestolide, phantolide, traesolide (ATII), galaxolide (HHCB) and tonalide (AHTN) in sewage and surface waters and their fate during wastewater treatment and anaerobic sludge digestion is investigated. AHTN and HHCB are the most important representatives and influent concentrations of 0.41-1.8 and 0.9-13 μg L−1 are observed. DPMI is detected in influent and effluent samples but in notably lower concentrations than AHTN and HHCB. Major sources of polycyclic musks are households, whereas industrial emitters seem to be of minor importance. This conclusion is supported by the analysis of selected industrial wastewaters (metal, textile and paper industry). Specific emissions of 0.36 ± 0.19 and 1.6 ± 1.0 mg cap−1 d−1 for AHTN and HHCB are calculated. Overall removal efficiencies between approx 50% and more than 95% are observed during biological wastewater treatment and removal with the excess sludge is the major removal pathway. Log KD values of 3.73-4.3 for AHTN, 3.87-4.34 for HHCB and 2.42-3.22 for DPMI are observed in secondary sludge. During sludge digestion no or only slight removal occurred. Mean polycyclic musk concentrations in digested sludge amounted to 1.9 ± 0.9 (AHTN), 14.2 ± 5.8 (HHCB), 0.8 ± 0.4 (ATII) and 0.2 ± 0.09 (DPMI) mg kg−1 dry matter. In the receiving water systems a comparable distribution as during wastewater treatment is observed. AHTN, HHCB and DPMI are detected in surface waters (ND (not detected) - < 0.04, ND - 0.32 and ND - 0.02 μg L−1) as well as AHTN and HHCB in sediments (ND - 20, ND - 120 μg kg−1). For HHCB an apparent KOC value of 4.1-4.4 is calculated for sediments. Major source for polycyclic musks in surface waters are discharges from wastewater treatment plants. For HHCB and DPMI 100% of the load observed in the sampled surface waters derive from discharges of treated wastewater.  相似文献   

20.
Endosulfan, one of the major pesticides used in cotton-growing, is of environmental concern because of its toxicity to fish and its apparent persistence in the environment. This study examines the distribution and degradation pathways for endosulfan in an aquatic system and the processes by which it is removed. In the alkaline waters of the cotton region, hydrolysis is the dominant degradation process. By this mechanism alone, the expected half-lives for the alpha- and beta-endosulfan isomers were found to be 3.6 days and 1.7 days, respectively. Partitioning studies showed, however, that the major proportion of endosulfan would associate with the sediments (log Koc(alpha) 3.6 and log Koc(beta) 4.3). Field studies confirmed the presence of high concentrations in sediments. Microcosm experiments showed that loss of endosulfan was slower than predicted from hydrolysis rates. Models are presented to explain how desorption from sediment limits the loss of endosulfan from a system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号