首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Understanding the response of air quality parameters such as visibility to the implementation of new air quality regulations, population growth and redistribution, and federal land managing practices is essential to the evaluation of air quality management plans on air quality in federal Class I areas. For instance, the reduction of SO2 emissions from large single point sources should result in the decrease of extreme sulfate concentrations, while population growth in geographic areas outside of urban centers could cause a slow widespread increase of sulfate and organic concentrations. The change in federal land managing practice of increased prescribed fire on a year-round basis in lieu of large naturally occurring wild fires could have the same effect; that is, the frequency of high sulfur days increase and low sulfur days decrease as the result of the management practice. Therefore, it is of interest to examine the trends associated with the proportion of days during which the concentration of some aerosol species is above or below a certain threshold and decide whether this proportion of days is increasing or decreasing or shows a lack of trend. This is a direct indication of whether the quality of the environment is improving or worsening, or neither.  相似文献   

2.
Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   

3.
ABSTRACT

Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   

4.
The trends in and relationships between ambient air concentrations of sulfur dioxide and sulfate aerosols at 48 urban sites and 27 nonurban sites throughout the U.S. between 1963 and 1972 have been analyzed. The substantial decreases in ambient SO2 concentrations measured at urban sites in the eastern and midwestern U.S. are consistent with the corresponding reductions in local SO2 emissions, but these decreases have been accompanied by only modest decreases in ambient sulfate concentrations. Large differences in the amounts of SO2 emitted within individual air quality control regions are associated with much smaller differences in the corresponding ambient sulfate concentrations. Substantial changes in the patterns of SO2 emissions between air quality regions result in essentially no differences between ambient sulfate concentrations in those air quality regions. Comparisons of several air quality regions in the eastern and western U.S. with similar SO2 emission levels and patterns of emissions clearly demonstrates the higher ambient sulfate concentration levels in eastern air quality control regions. Relationships between SO2, sulfates, and vanadium concentrations at eastern nonurban U.S. sites cannot be explained by local emission sources. These various observed results can be best explained by long distance sulfur oxide transport with chemical conversion of SO2 to sulfates occurring over ranges of hundreds of kilometers. This conclusion has been suggested earlier and the present analysis strongly supports previous discussions. An impact of long range transport of sulfates is to emphasize the need for Consistent strategies for reduction of sulfur oxides throughout large geographical regions. Additions of large capacities involving elevated sources in mid-continental or western regions could result in significant increases in sulfate concentrations well downwind of such sources. Some of the types of research activities required to quantitate crucial experimental parameters are discussed.  相似文献   

5.
Airborne fine particle mass concentrations in Southern California have declined in recent years. Trends in sulfate and elemental carbon (EC) particle concentrations over the period 1982-1993 are consistent with this overall improvement in air quality and help to confirm some of the reasons for the changes that are seen. Fine particle sulfate concentrations have declined as a strict sulfur oxides (SOx) emission control program adopted in 1978 was implemented over time. Fine particle elemental (black) carbon concentrations have declined over a period when newer diesel engines and improved diesel fuels have been introduced into the vehicle fleet. Organic aerosol concentrations have not declined as rapidly as the EC particle concentrations, despite the fact that catalyst-equipped cars having lower particle emission rates were introduced into the vehicle fleet alongside the diesel engine improvements mentioned above. This situation is consistent with the growth in population and vehicle miles traveled in the air basin over time. Fine particle ammonium nitrate in the Los Angeles area atmosphere contributes more than half of the fine aerosol mass concentration on the highest concentration days of the year, emphasizing both the need for accurate aerosol nitrate measurements and the likely importance of deliberate control of aerosol nitrate as a part of any serious further fine particle control program for the Los Angeles area.  相似文献   

6.
An air quality survey technique for measuring the horizontal spatial variation of carbon monoxide concentrations in urban areas is described; it was used to determine how representative an urban air monitoring station is of concentrations throughout the city.

The survey technique was applied in San Jose, Calif., where 1128 samples were collected over a six-month period and were compared with the values recorded simultaneously at the urban air monitoring station. All samples were collected at “breathing height” within a 13-square-mile grid which included the downtown area as well as surrounding residential and industrial locations. Three basic sampling strategies were employed to answer specific questions about the distribution of carbon monoxide concentration: (7) walking sampling, in which samples were obtained while walking along the sidewalks of congested downtown streets, (2) random spatial sampling, in which samples were collected at randomly selected points in the urban grid, and (3) specialized sampling in the immediate vicinity of the air monitoring station.

The results indicate that pedestrians on downtown streets in San Jose can be exposed to concentrations above the federal air quality standards without these values being observed at the air monitoring station. There also is evidence that, at any instant of time, similar values of carbon monoxide exist throughout this city (within a 13-square mile area), provided that measurements are not made in close proximity to streets. Furthermore, the higher concentrations observed in the immediate vicinity of streets decrease quite rapidly with increasing horizontal distance from these streets.

These findings, in the view of the authors, raise serious doubts as to whether it is possible to determine if air quality standards as currently defined are actually being met in urban areas using data from present-day air monitoring stations.  相似文献   

7.
We use ensemble-mean Lagrangian sampling of a 3-D Eulerian air quality model, CMAQ, together with ground-based ambient monitors data from several air monitoring networks and satellite (MODIS) observations to provide source apportionment and regional transport vs. local contributions to sulfate aerosol and PM2.5 concentrations at Baltimore, MD, for summer 2004. The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions on those days when sulfate air pollution is highest in Baltimore, with a principal transport pathway from the Ohio River Valley (ORV) through southern Pennsylvania and Maryland, consistent with earlier studies. Thus, reductions in sulfur emissions from the ORV under the EPA's Clean Air Interstate Rule may be expected to improve particulate air quality in Baltimore during summer. The Lagrangian sampling of CMAQ offers an inexpensive and complimentary approach to traditional methods of source apportionment based on multivariate observational data analysis, and air quality model emissions separation. This study serves as a prototype for the method applied to Baltimore. EPA is establishing a system to allow air quality planners to readily produce and access equivalent results for locations of their choice.  相似文献   

8.
Kirk Hatfield 《Chemosphere》1992,25(12):1753-1762
Land use regulations and air quality standards can be effective tools to control air pollution. Atmospheric transport/chemistry simulation models could be used to develop suitable regulations and standards; however, these models are not as efficient as air quality management models developed from embedding governing equations for atmospheric transport/chemistry into an optimization framework. Formulations of two steady-state air quality management models are presented to facilitate the development or evaluation of land use strategies to protect regional air quality from pollution generated from distributed point or nonpoint sources. Both models are linear programs constructed with equations that describe steady-state atmospheric pollutant fate and transport. The first model determines feasible pollutant loading patterns for multiple land use activities to accommodate the greatest regional population. The second model ascertains patterns of expanded land use which have a minimum impact on air quality. The primary goal of this paper is to explain how air pollution and land use modeling may be coupled to create an effective management tool to aid scientists and engineers with decisions affecting air quality and land use. The secondary goal is to show the types of air quality and regulatory information which could be obtained from these models. This latter goal is attained with general conclusions as consequence of applying ‘duality theory.’  相似文献   

9.
Megacities and atmospheric pollution   总被引:12,自引:0,他引:12  
About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog--induced primarily from traffic, but also from industrial activities, power generation, and solvents--has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to climate change. Yet, with appropriate planning, megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems. This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. While each city--its problems, resources, and outlook--is unique, the need for a holistic approach to the complex environmental problems is the same. There is no single strategy in reducing air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialog is essential to effectively implement the regulations required to address air quality problems.  相似文献   

10.
The relationships have been examined between the presence or absence of cumulus clouds and 3rd quarter fine particle sulfur concentrations in St Louis. An association between the presence of cumulus clouds with SO2 conversions in droplets and incrementally higher fine particle sulfur concentrations can be demonstrated. However, diurnal patterns of fine particle sulfur concentrations in the presence of cumulus clouds are not consistent with local contributions from sulfate formation in cumulus clouds. Morning fog often occurs on the same days on which cumulus clouds form later. Reactions of SO2 in fog droplets appear to make a contribution, but do not account for the major part of the increments in fine particle sulfur concentrations associated with cumulus clouds. The variations in fine particle sulfur concentrations observed can be explained if a substantial part of the sulfate formed in cumulus is transported upwards from the planetary boundary layer into the lower free troposphere. Subsequent multiday regional scale horizontal transport with concurrent gradual vertical transport of sulfate down to the surface would be consistent with the observed results.  相似文献   

11.
Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO2 and SO2 was conducted using the AERMOD model. The area-specific emission inventories of NOx and SO2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was Jbund, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration overfour selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations Jbfor each individual area, respectively. For AC-NO2, on-road mobile emissions were found to be the largest contributor in the two residential areas (36-38% of total AC-NO2), while petrochemical-industry emissions play the most important role in the two industrialized areas (34-51%). For AR-NO2, biomass burning has the most influence in all impacted areas (>90%) exceptJor one residential area where on-road mobile is the largest (75%). For AC-SO2, the petrochemical industry contributes most in all impacted areas (38-56%). For AR-SO2, the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this emission group when managing air quality for the MA.  相似文献   

12.
Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

13.
Land use pattern is an effective reflection of anthropic activities, which are primarily responsible for water quality deterioration. A detailed understanding of relationship between water quality and land use is critical for effective land use management to improve water quality. Linear mixed effects and multiple regression models were applied to water quality data collected from 2003 to 2010 from 36 stations in the Huai River basin together with topography and climate data, to characterize the land use impacts on water quality and their spatial scale and seasonal dependence. The results indicated that the influence of land use categories on specific water quality parameter was multiple and varied with spatial scales and seasons. Land use exhibited strongest association with dissolved oxygen (DO) and ammonia nitrogen (NH3-N) concentrations at entire watershed scale and with total phosphorus (TP) and fluoride concentrations at finer scales. However, the spatial scale, at which land use exerted strongest influence on instream chemical oxygen demand (COD) and biochemical oxygen demand (BOD) levels, varied with seasons. In addition, land use composition was responsible for the seasonal pattern observed in contaminant concentrations. COD, NH3-N, and fluoride generally peaked during dry seasons in highly urbanized regions and during rainy seasons in less urbanized regions. High proportion of agricultural and rural areas was associated with high nutrient contamination risk during spring. The results highlight the spatial scale and seasonal dependence of land use impacts on water quality and can provide scientific basis for scale-specific land management and seasonal contamination control.  相似文献   

14.
The Federal Clean Air Act (FCAA) framework envisions a federal-state partnership whereby the development of regulations may be at the federal level or state level with federal oversight. The U.S. Environmental Protection Agency (EPA) establishes National Ambient Air Quality Standards to describe “safe” ambient levels of criteria pollutants. For air toxics, the EPA establishes control technology standards for the 187 listed hazardous air pollutants (HAPs) but does not establish ambient standards for HAPs or other air toxics. Thus, states must ensure that ambient concentrations are not at harmful levels. The Texas Clean Air Act authorizes the Texas Commission on Environmental Quality (TCEQ), the Texas state environmental agency, to control air pollution and protect public health and welfare. The TCEQ employs three interactive programs to ensure that concentrations of air toxics do not exceed levels of potential health concern (LOCs): air permitting, ambient air monitoring, and the Air Pollutant Watch List (APWL). Comprehensive air permit reviews involve the application of best available control technology for new and modified equipment and ensure that permits protect public health and welfare. Protectiveness may be demonstrated by a number of means, including a demonstration that the predicted ground-level concentrations for the permitted emissions, evaluated on a case-by-case and chemical-by-chemical basis, do not cause or contribute to a LOC. The TCEQ's ambient air monitoring program is extensive and provides data to help assess the potential for adverse effects from all operational equipment in an area. If air toxics are persistently monitored at a LOC, an APWL area is established. The purpose of the APWL is to reduce ambient air toxic concentrations below LOCs by focusing TCEQ resources and heightening awareness. This paper will discuss examples of decreases in air toxic levels in Houston and Corpus Christi, Texas, resulting from the interactive nature of these programs.

Implications: Texas recognized through the collection of ambient monitoring data that additional measures beyond federal regulations must be taken to ensure that public health is protected. Texas integrates comprehensive air permitting, extensive ambient air monitoring, and the Air Pollutant Watch List (APWL) to protect the public from hazardous air toxics. Texas issues air permits that are protective of public health and also assesses ambient air to verify that concentrations remain below levels of concern in heavily industrialized areas. Texas developed the APWL to improve air quality in those areas where monitoring indicates a potential concern. This paper illustrates how Texas engaged its three interactive programs to successfully address elevated air toxic levels in Houston and Corpus Christi.  相似文献   

15.
Abstract

About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are often defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog—induced primarily from traffic, but also from industrial activities, power generation, and solvents—has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to global climate change. Yet, with appropriate planning megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems.

This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. This review considers not only megacities, but also urban centers with somewhat smaller populations, for while each city—its problems, resources, and outlook—is unique, the need for a holistic approach to complex environmental problems is the same. There is no single strategy to reduce air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialogue is essential to effectively implement the regulations required to address air quality.  相似文献   

16.
The air resource management concept is defined and delineated. Existing successful urban air resource management programs are described. The federal role in this development is briefly noted. The broad or essential keys to a successful program involve the development of an active public policy on air conservation, a dynamic organization with active support by top management, and the use of long-range planning by the program director to attain the community’s realistic goals for air quality.  相似文献   

17.
The applicability of tube-like diffusion samplers for the determination of ambient air concentrations of sulfur dioxide and nitrogen dioxide was evaluated. The diffusion tubes were made from polyethylene and triethanolamine was used as an absorbent. Artifacts due to the deposition of gaseous or particulate compounds to the tube walls were considered. With respect to sampling of nitrogen dioxide no interference by the tube walls could be observed. The determination of sulfur dioxide was strongly biased by the collection of particulate sulfate at the entrance part of the tube and along the tube walls. This effect leads to a large overestimation of the average air concentrations compared with fluorescence monitors.  相似文献   

18.

Background and purpose  

Pakistan, during the last decade, has seen an extensive escalation in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, a substantial rise has taken place in the types and number of emission sources of various air pollutants. However, due to the lack of air quality management capabilities, the country is suffering from deterioration of air quality. Evidence from various governmental organizations and international bodies has indicated that air pollution is a significant risk to the environment, quality of life, and health of the population. The Government has taken positive steps toward air quality management in the form of the Pakistan Clean Air Program and has recently established a small number of continuous monitoring stations. However, ambient air quality standards have not yet been established. This paper reviews the data being available on the criteria air pollutants: particulate matter (PM), sulfur dioxide, ozone, carbon monoxide, nitrogen dioxide, and lead.  相似文献   

19.
Previous analyses of continuously measured compounds in Fort McKay, an indigenous community in the Athabasca Oil Sands, have detected increasing concentrations of nitrogen dioxide (NO2) and total hydrocarbons (THC), but not of sulfur dioxide (SO2), ozone (O3), total reduced sulfur compounds (TRS), or particulate matter (aerodynamic diameter <2.5 μm; PM2.5). Yet the community frequently experiences odors, dust, and reduced air quality. The authors used Fort McKay’s continuously monitored air quality data (1998–2014) as a case study to assess techniques for air quality analysis that make no assumptions regarding type of change. Linear trend analysis detected increasing concentrations of higher percentiles of NO2, nitric oxide (NO), and nitrogen oxides (NOx), and THC. However, comparisons of all compounds between an early industrial expansion period (1998–2001) and current day (2011–2014) show that concentrations of NO2, SO2, THC, TRS, and PM2.5 have significantly increased, whereas concentrations of O3 are significantly lower. An assessment of the frequency and duration of periods when concentrations of each compound were above a variety of thresholds indicated that the frequency of air quality events is increasing for NO2 and THC. Assessment of change over time with odds ratios of the 25th, 50th, 75th, and 90th percentile concentrations for each compound compared with an estimate of natural background variability showed that concentrations of TRS, SO2, and THC are dynamic, higher than background, and changes are nonlinear and nonmonotonic. An assessment of concentrations as a function of wind direction showed a clear and generally increasing influence of industry on air quality. This work shows that evaluating air quality without assumptions of linearity reveals dynamic changes in air quality in Fort McKay, and that it is increasingly being affected by oil sands operations.

Implications: Understanding the nature and types of air quality changes occurring in a community or region is essential for the development of appropriate air quality management policies. Time-series trending of air quality data is a common tool for assessing air quality changes and is often used to assess the effectiveness of current emission management programs. The use of this tool, in the context of oil sands development, has significant limitations, and alternate air quality change analysis approaches need to be applied to ensure that the impact of this development on air quality is fully understood so that appropriate emission management actions can be taken.  相似文献   


20.
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land–sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year’s worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates.

Implications: A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land–sea breeze effects that can be used to manage local air quality in areas of similar microclimates.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号