首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
天津地区土壤有机碳和粘粒对PAHs纵向分布的影响   总被引:12,自引:3,他引:12  
研究了天津地区土壤中有机碳(TOC)和粘粒含量对多环芳烃(PAHs)纵向分布的影响,利用相对富集系数分析了PAHs在不同土壤深度的富集趋势.结果表明,土壤剖面中PAHs含量峰值一般在土壤的表层和次表层,并随着土壤剖面的加深而减少.土壤中有机碳含量、土壤粒度、PAHs性质和扰动、淋溶等均是影响PAHs纵向迁移的重要因素.PAHs相对富集在有机碳和粘粒含量较高的土壤中.高环PAHs主要是以与土壤有机质胶体结合的形式发生迁移,不易迁移到土壤剖面的深部,而低环PAHs则主要是以溶解态形式发生迁移,相对较易发生迁移.   相似文献   

2.
北京东南郊污灌区PAHs垂向分布规律   总被引:5,自引:3,他引:5  
采用Eijkelkamp土壤采样器对北京东南郊污灌区进行了3个钻孔剖面采样,分析了土壤样品的理化参数,并且采用气相色谱-质谱联用仪对土壤样品的多环芳烃(PAHs)进行了定量分析,研究了土壤理化参数和16种PAHs从表层到5.5 m深的范围内垂向变化规律.结果表明,污灌区表层土壤中有14种PAHs检出,检出浓度在4~428 μg/kg之间,表层以下PAHs的检出种类显著减少,主要以2环和3环的萘、菲、芴、苊烯、二氢苊、荧蒽6种为主.粘粒含量、粘土矿物总量、阳离子交换容量以及总有机碳4个理化参数相互之间在垂向变化上具有一致性,均在0.05水平上显著相关.表层以下粘粒含量与低环PAHs在垂向含量变化也有较好的一致性,粘粒含量高的层位,PAHs含量也较高.从剖面PAHs含量变化可以判断,低环PAHs较易迁移,它们的迁移性强弱顺序为:二氢苊>芴>萘>菲>苊烯>荧蒽,其它高环PAHs难以迁移,仅在表层土壤中检出,说明在长期污灌条件下,迁移性较好的低环PAHs能够迁移到较深的土层中,有可能导致浅层地下水的污染.  相似文献   

3.
典型工业区土壤多环芳烃污染特征及影响因素   总被引:8,自引:7,他引:1  
冉宗信  陈靖宇  王亚婷  邢智  魏威  余江 《环境科学》2019,40(10):4594-4603
为完善我国典型工业区土壤多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染特征数据库,系统采集了成都市4个典型石油加工类工业区表层土壤样品,采用高效液相色谱法分析16种美国环保署优先控制PAHs的含量和组分特征.结果表明,4个工业区表层土壤(0~30 cm)中多环芳烃总含量范围为191. 2~1 604. 2μg·kg-1,平均含量(583. 6±365. 6)μg·kg-1;各工业区土壤PAHs均主要以中环PAHs和高环PAHs为主,各单体PAHs中以菲、芘、荧蒽和苯并[b]荧蒽为主要特征因子,且均存在潜在的污染风险.同时,采用数理统计方法分析土壤有机质及土壤颗粒粒径与PAHs含量的相关性,并揭示土壤PAHs赋存影响因素.结果表明,在土壤污染含量较高地块,土壤有机质是PAHs较好的吸附剂,能够在一定程度上预测土壤PAHs的迁移转化行为及土壤生态风险(PAHs致癌性);与有机质相比,土壤粒径与PAHs的相关性较低,总体表现为砂粒与PAHs含量无显著相关性,粉粒与之弱正相关,黏粒与之弱负相关.通过本研究,为此类区域的土壤修复实践或学术研究提供依据.  相似文献   

4.
某农药厂废弃场地土壤中甲拌磷垂向分布特征   总被引:1,自引:0,他引:1  
为了解废弃农药厂土壤中甲拌磷的垂向分布特征,在前期表层土壤筛查的基础上,进一步在原甲拌磷生产车间开展了钻孔取样工作,布置了3个钻孔,钻孔深度43.0、41.0和45.0m,根据土壤颜色、岩性、电导率和pH的变化,共采集土壤样品39个,利用高效液相色谱仪对土壤中的甲拌磷进行了定量分析,同时测试了总有机碳、阳离子交换量、土壤粘粒含量、土壤含水率和温度等土壤的理化性质参数。测试结果显示,甲拌磷主要富集在表层土壤中,随着深度的增加,甲拌磷含量逐渐降低。根据相关性分析,土壤中甲拌磷含量和总有机碳含量有着显著的相关性,R分别为0.767、0.893和0.917,这表明土壤总有机碳含量对甲拌磷垂向分布有着非常重要的影响。  相似文献   

5.
慈溪市农田表层、亚表层土壤中多环芳烃(PAHs)的分布特征   总被引:7,自引:0,他引:7  
为了解多环芳烃在土壤中的迁移,研究了慈溪市农田表层土壤(耕层)和亚表层(犁底层)土壤中15种PAHs的含量及分布特征.表层土壤中PAHs的总量在70.4~325.1μg·kg-1之间;含量较高的几种化合物为萘(Nap)、菲(Phe)、荧葸(na)、芘(pyr)和苊(her)等,但主要以4环以上芳烃为主;Fla/(Fla Pyr)与IcP/(IeP BgP)比值分析表明,表层土壤中的PAHs主要来源于草、木、煤等的燃烧和汽车尾气排放.亚表层土壤中,PAHs总量为29.5~232.3μg·kg-1,以2环加3环化合物为主,单体PAH含量与表层土壤中含量的比值与其辛醇-水分配系数(10gKow)显著相关(r=0.923,P<0.0001),说明亚表层土壤中PAH主要来源于表层土壤的淋溶,根据化合物的logKow值可预测其在土壤中的迁移情况.亚表层土壤中PAHs的含量与有机质的含量极显著相关(r=0.945,P<0.0001),但表层中二者则无显著相关性(p=0.0887),表明耕作措施可能会对PAH在表层土壤中的分布产生影响.  相似文献   

6.
上海北部郊区土壤多环芳烃含量及来源分析   总被引:18,自引:4,他引:14  
为研究上海北部郊区农田土壤的多环芳烃(PAHs)含量特征,野外采集表层土壤样品,通过室内分析方法测定了土壤中16种PAHs的含量.结果表明,在研究区土壤中16种优控PAHs总含量(w(PAH16))为203.8~6 753.9 ng/g, 平均值为1 172.7 ng/g. 相对于荷兰的土壤修复目标值而言,上海北部郊区部分地块农田表层土壤PAHs含量偏高.说明研究区农田土壤已经受到了一定程度的PAHs污染.根据不同环数PAHs的相对丰度法和PAHs组分的浓度比值法判断,上海北部郊区表层土壤中的PAHs主要来源于石油和煤等化石燃料的高温燃烧及汽车尾气排放等燃烧源.   相似文献   

7.
黄淮平原农田土壤中多环芳烃的分布、风险及来源   总被引:9,自引:0,他引:9       下载免费PDF全文
对227个黄淮平原农田表层土壤样品中16种多环芳烃(PAHs)含量进行了调查,并对其致癌风险和来源等进行了分析.结果表明,有15种PAHs被普遍检出,各单体检出率在23.3%~100%之间(苊烯未检出).土壤中PAHs总量(∑PAHs15)为33.44~1246μg/kg,平均值为152.4±166.2μg/kg,且以4环及4环以上PAHs为主,其中16.7%的样品中PAHs含量达到了污染水平(>200μg/kg),与国内外其他地区相比,黄淮平原农田土壤中PAHs含量处于相对较低水平.黄淮平原农田土壤7种致癌性PAHs毒性当量浓度(TEQBap)占总毒性当量浓度的98.27%,其中苯并(a)芘(Bap)潜在致癌风险最大.同分异构体比值法和主成分分析结果表明黄淮平原农田土壤中PAHs的主要来源是汽油、柴油高温燃烧、以及煤和秸秆燃烧.相关性分析表明有机质含量与∑PAHs15及PAHs单体含量具有显著相关性,表明有机质是影响PAHs在土壤中含量、空间分布及归趋的一个重要因素.  相似文献   

8.
应用地统计学技术对全天津地区表层土壤中 16种优控多环芳烃含量和土壤理化参数进行了空间结构分析 .结果显示 ,各组分浓度均存在中尺度的空间自相关性 .多环芳烃浓度的空间结构存在明显的各向异性 .大气运移和土壤TOC含量可能是影响土壤多环芳烃浓度空间结构特征的重要环境因素 .  相似文献   

9.
上海市表层土壤中多环芳烃的分布特征与源解析   总被引:9,自引:0,他引:9       下载免费PDF全文
应用气相色谱-质谱联用仪(GC-MS)对上海市80个表层土壤样品中16种优控多环芳烃的浓度进行了测定,分析了上海市土壤中PAHs的含量分布特征,并利用同分异构体比值、主成分分析方法对表层土壤中的PAHs进行了源解析.结果表明,80个样点PAHs的含量在0.12~24.5μg/g之间,呈现出郊区>市区>农村的梯度变化,市区内不同功能区采样点呈现出交通区>文教区>公园绿地>商业区>住宅区的梯度变化. PAHs组成以4环和5环为主,平均含量分别占∑PAHs的49.2%和27.0%,其次为3环和6环,分别占∑PAHs的14.8%和6.6%,最低为2环PAHs,仅占2.4%,单体PAHs化合物以荧蒽、芘、苯并芘为主.源解析表明,表层土壤中PAHs的主要来源是燃烧源,主要是石油燃烧.  相似文献   

10.
天津地区土壤多环芳烃在剖面中的纵向分布特征   总被引:41,自引:3,他引:38  
在天津市北部山区、中部农田和东南部油田采油作业区分别采集了土壤样品 ,研究了土壤中多环芳烃 (PAHs)的纵向分布特征 ,并对土壤中多环芳烃的来源进行了分析 .结果表明 ,PAHs含量峰值一般位于土壤表层或次表层 ,并随着土壤剖面的加深而减少 .农田菜地土壤PAHs在 4 0cm深处含量仍然较高 ,而油田仅表层 3cm富集PAHs ,这与耕作土壤表层常受到人为扰动有关 .与高环物质相比 ,低环物质更容易向下迁移 .土壤中有机碳的含量、土壤的性质以及土壤的粒度均是影响PAHs迁移的重要因素 .山区和菜地土壤中PAHs主要来自燃烧源 ,而油田则显示为石油源和燃烧源的混合源 .  相似文献   

11.
有机碳含量对多环芳烃在土壤剖面残留及迁移的影响   总被引:1,自引:0,他引:1  
为了揭示有机碳含量(TOC)对多环芳烃(PAHs)在土壤剖面中迁移的影响,本文分析了北京地区部分典型的环境功能区(包括自然保护区、耕地、果园、农田、城区及工业区等)土壤剖面中多环芳烃和TOC的纵向分布特征,结合多环芳烃化合物的土柱淋滤实验,讨论了多环芳烃在土壤剖面上的纵向迁移特征.结果表明,不同环境功能区土壤剖面的土壤中多环芳烃的含量存在差异,且与TOC之间存在较强的正相关关系;土柱淋滤实验结果进一步证实,尽管具有不同TOC的土壤剖面中多环芳烃均可能向深层迁移,但TOC对土壤剖面中多环芳烃的残留及纵向迁移能力具有重要的影响,TOC越高,多环芳烃富集量越大,向下迁移量相对减少,反之相反;在TOC相同的情况下,多环芳烃的组成或结构特征对其在土壤剖面中的残留与迁移特征有明显的影响,淋滤水量、淋滤时间和添加PAHs量等对其在土壤剖面中的迁移作用也有一定影响.  相似文献   

12.
天津表土PAHs区域环境风险评价研究   总被引:1,自引:0,他引:1  
刘瑞民  王学军  张巍 《环境科学》2008,29(6):1719-1723
在参照国外相关标准基础上,应用指示克立格方法对天津地区表层土壤PAHs进行区域环境风险评价,并对评价结果进行比分析.结果表明,按照美国风险评价标准,只有组分Bap的含量超标,风险区域仅为8.12%和2.34%;按照荷兰风险评价标准,除了Ant和Baa的风险区域所占天津地区总面积的比重比较小之外(分别为5.26%和68.42%),其余所占比重都非常大,全部超过90%以上;按照加拿大风险评价标准,除了Nap的风险区域所占比重比较大(为97.89%)、Phe和Pyr所占比重中等(分别为56.84%和47.65%)之外,其余参与风险评价组分的风险区域所占比重都比较小,全部都在5%以下;按照丹麦(西兰岛)风险评价标准,只有组分Nap超标,且风险区域仅为9.26%.通过不同国家评价标准结果的比较,能充分了解天津地区目前土壤PAHs风险特征,对于制定符合天津地区特征以及符合中国特征的土壤PAHs风险评价标准具有重要的意义.  相似文献   

13.
多环芳烃在土壤剖面中迁移行为的土柱淋滤模拟研究   总被引:11,自引:1,他引:10  
京津地区典型土壤剖面分析表明,土壤中PAHs含量和组成均随深度增大而呈现明显的变化.为了揭示PAHs在土壤剖面中的迁移特征与控制因素,开展了室内土柱模拟实验,考察了PAHs的迁移特点及影响因素,特别是土壤有机质含量的影响.采用3种土壤质地和TOC不同的土样装填土柱,以去离子水作为淋滤液对预先加入土柱表层的污染物(包括不同环数PAHs、d-Flu)进行淋滤,当达到淋滤量后分析土柱中PAHs含量及组成.结果表明,不同实验条件下,淋滤后土壤剖面不同层次土壤中PAHs含量均高于原土样中的,且PAHs主要富集在土柱表层,随深度增加其含量明显降低,但不同土柱中降幅不同;不同环数PAHs分布特征存在差异.与原土柱相比,除d-Flu和Flu等低环数芳烃的含量在剖面不同深度均有明显增大外,部分高环数PAHs相对含量在土柱的不同深度也明显增加,说明高环数PAHs也具有一定的迁移能力,但相对于3环PAHs,高环数PAHs在土壤中迁移能力较低.此外,土壤剖面PAHs的富集程度明显受土壤中TOC影响,PAHs总量或单体PAH含量在土柱中迁移的深度随着TOC含量降低而增加.  相似文献   

14.
天津地区土壤多环芳烃的克里格插值与污染评价   总被引:19,自引:0,他引:19       下载免费PDF全文
应用克里格法研究了天津地区表层土壤中多环芳烃的含量水平及其空间分布规律.在此基础上,参照国外环境标准,对区域表层土壤中10种多环芳烃的污染现状进行了评价.结果显示,区域土壤已经受到一定程度的多环芳烃污染.萘超标倍数最大,强致癌物苯并(a)芘的超标情况也较为严重,需引起进一步的关注.西青区和市区是土壤多环芳烃含量超标最严重的区域.  相似文献   

15.
南京和宜兴市土壤中多环芳烃(PAHs)的纵向分布   总被引:4,自引:1,他引:3  
采集了江苏省南京和宜兴市的土壤剖面样品,用高效液相色谱分析了16种PAHs在土壤样品中的含量,研究了PAHs在土壤剖面中的纵向分布特征和影响因素。结果表明,在采样点土壤0~10cm的表土中16种PAHs总量最高,为280.8~717.1μg/kg,随着土壤剖面的加深PAHs总量减少,在70~80cm土层中为8.7~97.5μg/kg。不同PAHs组分在土壤中分布的特点不同,低环的PAHs(≤3环)含量在0~80cm土层中都有分布且随土壤深度加深而减少,而高环的PAHs(≥4环)主要分布在0~30cm土层中,30cm以下土层中含量较少甚至检测不到。相关分析表明,在每个土壤剖面中PAHs总量与其土壤有机碳含量显著相关,PAHs在农田土壤剖面中的纵向分布与土壤有机碳含量、PAHs的理化性质有很大的关系。  相似文献   

16.
文章在不同类型灌溉用水的三个典型灌区进行土壤精细剖面钻探采样分析,研究16种优控多环芳烃在土壤剖面的分布特征和不同灌溉条件对土壤质量的影响。结果表明:表土是多环芳烃的主要累积层位,污灌区、再生水灌区、清灌区表土的多环芳烃总量分别为726、200、34μg/kg,说明长期进行污水和再生水灌溉均会造成不同程度的土壤污染;受多环芳烃自身理化性质的影响,低环的多环芳烃容易向土壤剖面的深部迁移,在表土以下的层位占绝对优势分布,高环的多环芳烃迁移性很弱,基本只在表层有检出;通过对各灌区剖面的典型多环芳烃含量和土壤理化指标进行相关分析和回归分析,得出TOC是多环芳烃在土壤剖面垂向迁移的主要影响因素。  相似文献   

17.
The contents and distribution of 20 polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic hydrocarbons (HAHs) were investigated in 16 soil profiles of Beijing and Tianjin region. Transport of high molecular weight PAHs (HMWPAHs) and the correlation between total organic carbon (TOC) and their concentrations were also discussed. The results indicated that highly contaminated sites were located at urban or wastewater irrigation areas and pollutants mainly accumulated in topsoil (< 40 cm), with a sharp content decrease at the vertical boundary of 30–40 cm. Total PAHs/HAHs concentrations in soils from Tianjin were markedly greater than those from Beijing. Even the contents at bottoms of soil profiles in Tianjin were higher than those in topsoils of Beijing soil profile. HMWPAHs dominated the PAH profiles, exhibiting a uniform distribution of pyrogenic origin between topsoils and deep layers. Furthermore, the percentages of HMWPAHs remained relative constant with the depth of soil profiles, which were consistent with the distribution of particulate matter-associated PAHs in the local atmospheric environments. Therefore, HMWPAHs transport with particulates might be the predominant source found in soil profiles.  相似文献   

18.
为探究岩溶槽谷区土壤中多环芳烃(PAHs)的环境行为,选取典型的竹林地、灌丛地和耕地作为研究对象,运用气相色谱-质谱联用仪定量分析土壤中的PAHs.结果表明,土壤剖面中PAHs污染水平表现为竹林地(204.13 ng·g-1)>耕地(175.47 ng·g-1)>灌丛地(106.00 ng·g-1),土壤质量总体良好.3种土地类型均表现为浅层土壤的PAHs含量显著高于深层土壤(p<0.05),表明岩溶区土壤对防止地下水污染具有重要意义;2~3环PAHs易运移至深层土壤,而4~6环PAHs受TOC含量的影响则主要积聚在浅层土壤,富集能力表现为灌丛地>耕地>竹林地;PAHs运移特征主要受控于有机质的吸附和水的溶解两种机制,PAHs和土壤的理化性质是影响PAHs运移的重要因素.结合同分异构体比值法和主成分分析法的源解析结果,得出研究区土壤中PAHs主要源于当地能源燃烧和交通污染,而大气沉降是重要污染途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号