首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diuron [3-(3,4-dichlorophenyl)- = 1,1-dimethylurea] and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the combined effect of these herbicides and the amendment of soil with an organic waste (OW) from the olive oil production industry on the growth and photosynthetic apparatus of adult olive trees and to compare the results with those obtained by Redondo-Gómez et al. for two-year-old trees. For this purpose, growth rate, gas exchange and chlorophyll fluorescence parameters were measured in 38-year-old olive trees, after one and two months of soil herbicide treatment and/or OW amendment. Soil co-application of OW and herbicide increases the quantum efficiency of Photosystem II (PSII) and the assimilation of CO(2) in olive trees, which led to a higher relative growth rate of the branches and leaves in length. Herbicide treatment reduced the photosynthetic efficiency in olive trees after two months of soil application, while this reduction is evident from week one in younger trees.  相似文献   

2.
Lu CM  Chau CW  Zhang JH 《Chemosphere》2000,41(1-2):191-196
Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.  相似文献   

3.
BACKGROUND: Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On METHODS: Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. RESULTS: Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. DISCUSSION: The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. CONCLUSIONS: Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. RECOMMENDATIONS: Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. PERSPECTIVES: Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.  相似文献   

4.
Investigations using chlorophyll fluorescence induction kinetics provide the parameters Rfd, L, and Ap to characterize different specifications of the photosynthetic system (PS). The application of ozone, with concentrations between 100 microg m(-3) and 2000 microg m(-3) to spruce in closed chambers yields a reduction of Rfd between 6% and 23% for the current year's needles, which indicates a reduced potential photosynthetic capacity. Further measurements on the current year's needles of spruce of the damage classes S0/S1, S2 and S3 show also a reduction of Rfd of between 7% and 14% in 2 successive years. In addition, the parameter L increases for damaged trees by between 11% and 49%, indicating a change of the chlorophyll content and of the internal energy distribution between PSI and PSII. As no effect of L can be observed with ozone fumigation, it is concluded that the change of some specifications of the PS can be simulated well by ozone fumigation (e.g. Rfd) while other specifications cannot (e.g. L).  相似文献   

5.
Spring barley (Hordeum vulgare cv. Klaxon) plants, 9 days old, were exposed to 0.05, 0.10 or 0.15 microl litre(-1) ozone (O3) for 12 days. Fumigation was administered for 7 h between 9.00 h and 16.00 h each day. Using conventional IRGA equipment, the carbon dioxide exchange rate (CER) was shown to decrease with increasing concentration of O3 during the exposure period, falling to 60% of the control value at the highest O3 concentration. Transpiration rates and stomatal conductance showed similar trends. Light saturation curves, obtained using a leaf disc oxygen electrode, demonstrated that O3-treated leaves had lower apparent quantum yields (QY) and generally lower rates of O2 evolution at saturating light and CO2 levels. Oscillations in chlorophyll a fluorescence, normally observed in control plants, could not be detected after O3 treatment and could only be restored to some extent by feeding the phosphate sequestering agent D-mannose to the leaves.  相似文献   

6.
The impact of UV-B radiation on 10 genotypically different barley and tomato cultivars was tested in a predictive study to screen for potentially UV-tolerant accessions and to analyze underlying mechanisms for UV-B sensitivity. Plant response was analyzed by measuring thermoluminescence, fluorescence, gas exchange and antioxidant status. Generally, barley cultivars proved to be much more sensitive against UV-B radiation than tomato cultivars. Statistical cluster analysis could resolve two barley groups with distinct differences in reaction patterns. The UV-B sensitive group showed a stronger loss in PSII photochemistry and a lower gas-exchange performance and regulation after UV-B radiation compared to the more tolerant group. The results indicate that photosynthetic light and dark reactions have to play optimally in concert to render plants more tolerant against UV-B radiation. Hence, measuring thermoluminescence/fluorescence and gas exchange in parallel will have much higher potential in identifying tolerant cultivars and will help to understand the underlying mechanisms.  相似文献   

7.
Contamination by chromium (Cr) is widespread in agricultural soils and industrial sites. This heavy metal represents a risk to human health. In order to gain fundamental insights into the nature of the adaptation to Cr excess, the characterisation of physiological indices, including responses of photosynthetic gas exchange and chlorophyll a fluorescence along with changes in mineral nutrient contents and water status were studied in ray grass (Lolium perenne L.). Increased concentrations of Cr(VI) (0-500 microM Cr) in the Co?c and Lessaint nutrient solution were applied. The growth of Lolium perenne is decreased by chromium and the leaves have lost their pigments. Chromium accumulation was greater in roots than in leaves and reached 2450 and 210 microg g(-1) DW, respectively with 500 microM Cr(VI) in nutrient medium. The physiological parameters were severely reduced by this heavy metal. Cr induced toxicity arising from 100 microM Cr(VI) and resulted in a modification of mineral content in roots and leaves, especially for Ca, Mg and Fe. The chromium stress decreased CO2 assimilation rates mainly due to stomatal closure, which reduced water loss by transpiration without decreasing the cellular available CO2. The fluorescence parameters associated with photosystem II (PSII) activity and the photochemical activity are modified by chromium. Non-radiative energy dissipation mechanisms were triggered during stress since non-photochemical quenching was increased and efficiency of excitation capture by open centers was reduced.  相似文献   

8.
Effects of ozone impact on gas exchange and chlorophyll fluorescence of juvenile birch (Betula pendula) stems and leaves were investigated. Significant differences in the response of leaves and stems to ozone were found. In leaves, O3 exposure led to a significant decline in photosynthetic rates, whereas stems revealed an increased dark respiration and a concomitant increase in corticular photosynthesis. In contrast to birch leaves, corticular photosynthesis appeared to support the carbon balance of stems or even of the whole-tree under O3 stress. The differences in the ozone-response between leaves and stems were found to be related to ozone uptake rates, and thus to inherent differences in leaf and stem O3 conductance.  相似文献   

9.
In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth > photosynthetic pigments content = photosynthetic O2 evolution > photosynthetic electron transport > respiration. The uncoupled relationship between growth and metabolism is discussed.  相似文献   

10.
Environmental Science and Pollution Research - Determining the effect of ridge-furrow cultivation mode on 13C carbon isotope discrimination, photosynthetic capacity, and leaf gas exchange...  相似文献   

11.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

12.
Six sediment cores were collected from Green Bay, Wisconsin, in order to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) by a chemical mass balance (CMB) model. The cores which were obtained in 1995 had total PAH concentrations between 8.04 and 0.460 ppm. 210Pb and 137Cs dating was used to determine historical trends of PAH inputs, and elemental carbon particle analysis was done to characterize particles from combustion of coal, wood and petroleum. The results show that coke burning, highway dust, and wood burning are likely sources of PAHs to Green Bay. The contribution of coke oven emissions (CB) for the Green Bay cores is in the range of 5 to 90%. The overall highway dust (HWY) contribution is between 5 and 70%. There is a maximum (approximately 67%) contribution of HWY around 1988 which is in agreement with the historical US petroleum consumption. The wood burning (WB) contribution is between 1 to 30%, except in core GB-A where a maximum (approximately 50%) is found around 1994. The average relative errors of measurement for x2 equal to the number of degrees of freedom, are 52.5, 56.2, 36.2, 52.3, and 42.8 (df = 3) for the Green Bay cores A, B, C, E, and F, respectively. The sums of the contribution factors are less than one, indicating gain of inert biological or other bulk material between source and receptor. The results of carbon particles for Green Bay core D show that coal, oil, and wood burning are consistent with the CMB modeling results.  相似文献   

13.
One month old soybean (Glycine max (L.) Merrill) cv. 'Williams' plants were exposed to nitrogen dioxide (NO2 at 0.1, 0.2, 0.3, and 0.5 microl liter(-1) and carbon filtered air (control), 7 h per day for five days, under controlled environment. Data were collected on net photosynthetic rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately following the fifth day of exposure and 24 h after termination of exposure. Chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (tot Ch) and foliar nitrogen (N) were measured before and after exposures. Growth characteristics--relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), and root shoot ratio (RSR) -- were computed for treated plants using standard growth equations. Increases of 18% and 23% in PN were observed immediately following exposure to 0.2 microl liter(-1) NO2 and after 24 h recovery period, respectively. With 0.5 microl liter(-1) NO2 treatment, reductions in PN of 23% and 50% were observed, immediately after exposure and following 24 h recovery, respectively. DR rates with 0.2 l liter(-1) treatment were higher than the control. Chlorophyll a and tot Ch showed significant reduction with 0.5 microl liter(-1) NO2 treatment. The percent reduction in Ch a and tot Ch with 0.5 microl liter(-1) NO2 were 45% and 47%, respectively. Increases in foliar nitrogen content after 0.2 and 0.3 microl liter(-1) NO2 treatments were 46% and 69%, respectively. Nitrogen dioxide at 0.5 microl liter(-1) reduced RGR and NAR by 47% and 51%, respectively. Leaf area ratio was 42% higher in 0.5 microl liter(-)1 NO2 treated plants, compared with the control; this increase was insufficient to compensate for the decrease in NAR resulting in a net decline in RGR. Nitrogen dioxide up to 0.2 microl liter(-1) increased PN and foliar-N content of soybean. With 0.5 microl liter(-1) NO2, significant decreases were observed in PN, leaf chlorophyll, foliar-N, NAR and RGR. Nitrogen dioxide up to 0.2 microl liter(-)1 has a favorable influence on overall growth characteristics of soybean; however, inhibitory effects were seen with NO2 treatment at 0.5 microl liter(-1).  相似文献   

14.
The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.  相似文献   

15.
In a nitrogen (N) saturated forest downwind from Los Angeles, California, the cumulative response to long-term background-N and N-amendment on black oak (Quercus kelloggii) was described in a below-average and average precipitation year. Monthly measurements of leaf and branch growth, gas exchange, and canopy health attributes were conducted. The effects of both pollutant exposure and drought stress were complex due to whole tree and leaf level responses, and shade versus full sun leaf responses. N-amended trees had lower late summer carbon (C) gain and greater foliar chlorosis in the drought year. Leaf water use efficiency was lower in N-amended trees in midsummer of the average precipitation year, and there was evidence of poor stomatal control in full sun. In shade, N-amendment enhanced stomatal control. Small differences in instantaneous C uptake in full sun, lower foliar respiration, and greater C gain in low light contributed to the greater aboveground growth observed.  相似文献   

16.
Chromate (Cr) decreases the growth of Spirodela polyrhiza. The fronds lost their pigments. The O2 evolution was also decreased. The Cr effect was found to be dose dependent. The toxic effects of Cr have further been studied on the photosynthetic activity of Spirodela polyrhiza by means of the chlorophyll a (Chl a) fluorescence transient O-J-I-P. The Chl a fluorescence transients were recorded in vivo with high time resolution and analyzed according to the JIP-test which can quantify the photosystem II behavior. Cr treated plants show a decrease in yield for primary photochemistry, phi Po. The performance index of PSII, PIABS, which is the combination of the indexes of three independent parameters, (1) the total number of active reaction centers per absorption (RC/ABS), (2) yield of primary photochemistry (phi Po) and (3) efficiency with which a trapped exciton can move an electron into the electron transport chain (psi 0), decreased due to Cr treatment. Chromate sensitivity varies within plant populations. In summary Cr affects several targets of PSII. More specifically, the main targets of Cr, according to the JIP-test, can be listed as a decrease in the number of active reaction centers and damage to the oxygen-evolving complex.  相似文献   

17.
The effects of limestone dust deposition on vegetation in desert ecosystems have not yet been reported. We investigated these effects in a succulent shrub from the Namib Desert at a limestone quarry near Skorpion Zinc mine (Namibia). Effects of limestone dust were determined in Zygophyllum prismatocarpum (dollar bush) plants with heavy, moderate and no visible foliar dust cover by means of chlorophyll a fluorescence measurements. Limestone dust deposition decreased overall plant performance through loss of chlorophyll content, inhibition of CO(2) assimilation, uncoupling of the oxygen-evolving complex and decreased electron transport. Importantly, dynamic recovery occurred after termination of limestone extraction at the quarry. Recovery was accelerated by rainfall, mainly because of dust removal from leaves and stimulation of new growth. These results indicate that limestone dust has severe effects on photosynthesis in desert shrubs, but that recovery is possible and that, in arid environments, this process is modulated by rainfall.  相似文献   

18.
煤矸石是煤炭在开采、洗选过程中产生的固体废弃物,其中二氧化硅、氧化铝和碳占到矸石总量的90%以上,又是一种可以利用的资源。实验以山西潞安煤矿的洗矸为原料,采用SEM、IR和XRD等分析测试手段对不同煅烧温度下的煤矸石进行微观形貌、化学键变化和矿物组成的分析研究,确定氧化铝的活化温度区间;并根据煤矸石的活化机理,选择提高氧化铝溶出率的添加剂。实验结果为:煤矸石中氧化铝的活化温度区间为600~850℃;酸浸过程中添加氟化钠可以打开煤矸石中的SiO2—Al2O3,使氧化铝溶出率达到90%以上,和通常条件下氧化铝的溶出率相比提高20%左右。本研究为煤矸石高值利用提取氧化铝提供了技术基础,也为粉煤灰等低铝含量矿物的开发利用提供借鉴。  相似文献   

19.
Evaluation of olive oil mill wastewater toxicity on spinach   总被引:1,自引:1,他引:0  

Background, aim, and scope

Olive oil mill wastewater (OMW), a by-product of the olive oil extraction process, is annually produced in huge amounts in olive-growing areas and represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:20 and 1:10) on spinach plants in order to evaluate OMW dilutions as a low-cost alternative method for the disposal of this waste.

Materials and methods

The effects of OMW dilutions were evaluated on seed germination, shoot and root elongation, biomass production, nutrient uptake and translocation, ascorbic acid content, polyphenols, photosynthetic pigments, and photosynthetic performance of spinach.

Results

Plant biomass was more affected than plant height and total chlorophyll; carotenoid and ascorbic acid content progressively decreased with decreasing OMW dilution. Exposure to both OMW dilutions resulted in overaccumulation of total polyphenols, which were negatively correlated to plant biomass and nutrients. Nutrient (Fe, Ca, and Mg) content was insufficient leading to reduced growth. Water use efficiency decreased mainly due to decreased CO2 assimilation rate rather than to a decline of transpiration rate. Disturbances in photosystem II (PSII) photochemical efficiency could be better envisaged by the ratio between variable fluorescence and initial fluorescence (Fv/Fo), which showed much greater amplitude than the maximal photochemical efficiency of PSII photochemistry (Fv/Fm).

Conclusions

From the data obtained, it is suggested that 1:20 OMW dilutions are still phytotoxic and that higher OMW dilutions should be used in order to use this waste for the irrigation of spinach plants.  相似文献   

20.
Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450ppm by gravitational trunk infusion in May-September 2005 (32.5ppmh AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O(3) effects on leaf growth and visible injury is controversial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号