首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of slow-release chemical oxidants for sub-surface remediation is a relatively new technology. Our objective was to develop slow-release persulfate-paraffin candles to treat BTEX-contaminated groundwater. Laboratory-scale candles were prepared by heating and mixing Na2S2O8 with paraffin in a 2.25 to 1 ratio (w/w), and then pouring the heated mixture into circular molds that were 2.38 cm long and either 0.71 or 1.27 cm in diameter. Activator candles were prepared with FeSO4 or zerovalent iron (ZVI) and wax. By treating benzoic acid and BTEX compounds with slow-release persulfate and ZVI candles, we observed rapid transformation of all contaminants. By using 14C-labeled benzoic acid and benzene, we also confirmed mineralization (conversion to CO2) upon exposure to the candles. As the candles aged and were repeatedly exposed to fresh solutions, contaminant transformation rates slowed and removal rates became more linear (zero-order); this change in transformation kinetics mimicked the observed dissolution rates of the candles. By stacking persulfate and ZVI candles on top of each other in a saturated sand tank (14 × 14 × 2.5 cm) and spatially sampling around the candles with time, the dissolution patterns of the candles and zone of influence were determined. Results showed that as the candles dissolved and persulfate and iron diffused out into the sand matrix, benzoic acid or benzene concentrations (Co = 1 mM) decreased by >90% within 7 d. These results support the use of slow-release persulfate and ZVI candles as a means of treating BTEX compounds in contaminated groundwater.  相似文献   

2.
1,2-Dichloroethane (1,2-DCA) is one of the most hazardous pollutant of soil and groundwater, and is produced in excess of 5.44 × 109 kg annually. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Heavy metals are known to be toxic to soil microorganisms at high concentrations and can hinder the biodegradation of organic contaminants. In this study, the inhibitory effect of heavy metals, namely; arsenic, cadmium, mercury and lead, on the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms was evaluated in soil microcosm setting. The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA in both soil samples tested, with the toxic effect being more pronounced in loam soil, than in clay soil. Generally, 75 ppm As3+, 840 ppm Hg2+, and 420 ppm Pb2+ resulted in 34.24%, 40.64%, and 45.94% increase in the half live (t½) of 1,2-DCA, respectively, in loam soil, while concentrations above 127.5 ppm Cd2+, 840 ppm Hg2+ and 420 ppm of Pb2+ and less than 75 ppm As3+ was required to cause a >10% increase in the t½ of 1,2-DCA in clay soil. A dose-dependent relationship between degradation rate constant (k1) of 1,2-DCA and metal ion concentrations was observed for all the heavy metals tested, except for Hg2+. This study demonstrated that different heavy metals have different impacts on the degree of 1,2-DCA degradation. Results also suggest that the degree of inhibition is metal specific and is also dependent on several factors including; soil type, pH, moisture content and available nutrients.  相似文献   

3.
Chemical extractions have been shown to measure the biodegradable fraction of aromatic contaminants in soil; however, there is little research on the chemical prediction of aliphatic hydrocarbon degradation. The aim of this study was to investigate the potential for cyclodextrin extractions to predict hexadecane biodegradation in soil. Soils were amended with 10 or 100 mg kg−1 of a model alkane n-hexadecane and 100 Bq g−114C-n-hexadecane. Correlations between the extents of mineralisation and extractions of the 14C-contaminant were determined. Solvent shake extractions and aqueous CaCl2 extractions were poor predictors of hexadecane bioaccessibility. However, the novel HP-α-CD shake extraction showed close correlation (r2 = 0.90, n = 36, p < 0.05) to the mineralisation data. This novel extraction technique has the potential to be used to assess the biodegradable aliphatic hydrocarbon fraction in contaminated soils.  相似文献   

4.
Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high.To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study.In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively.Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative.A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations (56.8 μg L−1) in the influent (PEC = 79.8 μg L−1), but effluent concentration was much lower (0.76 μg L−1) whereas Guanylurea was detected in a low influent and high effluent concentration (1.86 μg L−1). These data support the experimental findings in the OECD tests and analytical results of other studies, that Metformin under aerobic conditions can bacterially be degraded to the stable dead-end transformation product Guanylurea.  相似文献   

5.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

6.
《Chemosphere》2013,93(2):269-273
Genotoxic effects of Bismuth (III) oxide nanoparticles (BONPs) were investigated on the root cells of Allium cepa by Allium and Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at five different concentrations (12.5, 25, 50, 75, and 100 ppm) for 4 h. Exposure of BONPs significantly increased mitotic index (MI) except 12.5 ppm, total chromosomal aberrations (CAs) in Allium test. While stickiness chromosome laggards, disturbed anaphase–telophase and anaphase bridges were observed in anaphase–telophase cells, pro-metaphase and c-metaphase in other cells. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These results indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.  相似文献   

7.
Gan HM  Shahir S  Ibrahim Z  Yahya A 《Chemosphere》2011,82(4):507-513
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μmax, Ks and Ki were determined to be 0.13 h−1, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.  相似文献   

8.
Yan H  Wang J  Chen J  Wei W  Wang H  Wang H 《Chemosphere》2012,87(1):12-18
Enzymes encoded by genes biodegrading microcystins (MCs) can help reveal the function of genes and biodegradation pathway of MCs. Here the first and important gene (USTB-05-A, 1,008 bp) involved in biodegradation of microcystin-RR (MC-RR) was cloned from Sphingopyxis sp. USTB-05 and firstly expressed in Escherichia coli BL21 (DE3) with an expression vector of pGEX4T-1 successfully. The nucleotide sequences of cloned USTB-05-A possessed 92.5% homology to that of mlA reported in Sphingomonas sp. strain ACM-3962. The deduced amino acid sequences containing the cleavage sites of 26th (alanine) and 27th (leucine) showed 83% identical to that of MlrA. The cell-free extract (CE) of recombinant E. coli BL21 (DE3) containing USTB-05-A had high activity for biodegrading MC-RR. Initial MC-RR of 40 mg L−1 was completely biodegraded under total protein of 350 mg L−1 within 0.25 h. A product derived from MC-RR appeared distinctly with the decrease of MC-RR peak on the profile of HPLC. The product (m/z 1056.5) had molecular weight of 18 higher than that of MC-RR (m/z 1038.7). The findings provided the positive evidences that biodegradation of MC-RR began with the breakage of cyclic MC-RR and then it was converted to linear MC-RR as the first product catalyzed by first enzyme of Sphingopyxis sp. USTB-05.  相似文献   

9.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

10.
Lemaire J  Croze V  Maier J  Simonnot MO 《Chemosphere》2011,84(9):1181-1187
An industrial coating site in activity located on a chalky plateau, contaminated by BTEX (mainly xylenes, no benzene), is currently remediated by in situ chemical oxidation (ISCO). We present the bench scale study that was conducted to select the most appropriate oxidant. Ozone and catalyzed hydrogen peroxide (Fenton’s reaction) were discarded since they were incompatible with plant activity. Permanganate, activated percarbonate and activated persulfate were tested. Batch experiments were run with groundwater and groundwater-chalk slurries with these three oxidants. Total BTEX degradation in groundwater was reached with all the oxidants. The molar ratios [oxidant]:[Fe2+]:[BTEX] were 100:0:1 with permanganate, 100:100:1 with persulfate and 25:100:1 with percarbonate. Precipitation of either manganese dioxide or iron carbonate (siderite) occurred. The best results with chalk slurries were obtained with permanganate at the molar ratio 110:0:1 and activated persulfate at the molar ratio 110:110:1. To avoid precipitation, persulfate was also used without activation at the molar ratio 140:1. Natural Oxidant Demand measured with both oxidants was lower than 5% of initial oxidant contents. Activated percarbonate was not appropriate because of radical scavenging by carbonated media. Permanganate and persulfate were both effective at oxidant concentrations of ca 1 g kg−1 with permanganate and 1.8 g kg−1 with persulfate and adapted to site conditions. Activation of persulfate was not mandatory. This bench scale study proved that ISCO remediation of a chalky aquifer contaminated by mainly xylenes was possible with permanganate and activated or unactivated persulfate.  相似文献   

11.
Aerobic biodegradation of amines in industrial saline wastewaters   总被引:1,自引:0,他引:1  
Campo P  Platten W  Suidan MT  Chai Y  Davis JW 《Chemosphere》2011,85(7):1199-1203
The treatment of hypersaline wastewaters represents a challenge since high salt concentrations disrupt bacteria present in normal biological treatments. This study was conducted to determine the fate of amines in two hypersaline wastewaters obtained from an industrial treatment plant processing influents with 3% and 7% of NaCl. The compounds were aniline (ANL), 4,4′-methylenedianiline (4,4′-MDA), cyclohexylamine (CHA), N-(2-aminoethyl)ethanolamine (AEA), N,N-diethylethanolamine (DEA), N,N-bis(2-hydroxyethyl)methylamine (MDEA), and tris(2-hydroxyethyl)amine (TEA). Mixtures of these chemicals with a mixed liquor suspended solids concentration of 1000 mg L−1 were prepared at two salinities (3% and 7% NaCl). Ethanolamines were readily biodegraded at both salinities, following first-order kinetics with half-lives ranging between 10 and 58 h. Hydroxyl groups present in the ethanolamines had a positive impact on the biodegradation. Salinity did not affect the biodegradation rate of TEA and MDEA, whereas AEA and DEA degraded faster in 3% NaCl. After 48 h, CHA was metabolized within a 24-h period in 3% NaCl, while no degradation was observed in 7% NaCl. ANL exhibited lag phases in both salinities and, in the following 24-h period, ANL concentrations dropped 40% and disappeared after 48 h. 4,4′-MDA degraded in 3% NaCl (half-life of 123 h) and remained unaltered after 120 h in 7% NaCl.  相似文献   

12.
Laviale M  Morin S  Créach A 《Chemosphere》2011,84(5):731-734
Aquatic organisms are exposed to fluctuating concentrations of herbicides which contaminate rivers following their use for agricultural or domestic purposes. The development of sensitive bioanalytical tests enabling us not only to detect the effects of those pollutants but to take into account this pattern of exposure should improve the ecological relevance of river toxicity assessment. In this respect, the use of chlorophyll fluorescence measurements is a convenient way to probe the effect of photosystem II (PSII) inhibitors on primary producers. This study was devoted to validate the combined use of two fluorescence parameters, the effective and the optimal quantum yields of PSII photochemistry (ΦPSII and Fv/Fm), as reliable biomarkers of initial isoproturon (IPU) or atrazine (ATZ) toxicity to natural periphyton in a pulse exposition scenario. ΦPSII and Fv/Fm were regularly estimated during a 7 h-exposure to each pollutant (0-100 μM) and also later after being transferred in herbicide-free water (up to 36 h). Our results showed that IPU was more toxic than ATZ, but with effects reversible within 12 h. Moreover, these two similarly acting herbicides (i.e. same target site) presented contrasted short term recovery patterns, regarding the previous exposure duration.  相似文献   

13.
A novel nanocomposite based on incorporation of multiwalled carbon nanotubes (MWCNTs) in polyvinyl chloride (PVC) was prepared. Proposed nanocomposite was coated on stainless steel wire by deep coating. Composition of nanocomposite was optimized based on results of morphological studies using scanning electron microscopy. The best composition (83% MWCNTs:17% PVC) was applied as a solid phase microextraction fiber. Complex mixture of aromatic (BTEX) and aliphatic hydrocarbons (C5–C34) were selected as model analytes, and performance of proposed fiber in extraction of the studied compounds from water and soil samples was evaluated. Analytical merits of the method for water samples (LODs = 0.10–1.10 ng L−1, r2 = 0.9940–0.9994) and for soil samples (LODs = 0.10–0.77 ng kg−1, r2 = 0.9946–0.9994) showed excellent characteristics of it in ultra trace determination of petroleum type environmental pollutants. Finally, the method was used for determination of target analytes in river water, industrial effluent and soil samples.  相似文献   

14.
Huang L  Lu D  Diao J  Zhou Z 《Chemosphere》2012,87(1):7-11
Enantioselectivity in ecotoxicity and biodegradation of chiral pesticide benalaxyl to freshwater algae Scenedesmus obliquus was studied. The 96 h-EC50 values of rac-, R-(−)-, S-(+)-benalaxyl were 2.893, 3.867, and 8.441 mg L−1, respectively. Therefore, the acute toxicities of benalaxyl enantiomers were enantioselective. In addition, the pigments chlorophyll a and chlorophyll b, antioxidant enzyme activities catalase (CAT) and superoxide dismutase (SOD) as well as lipid peroxide malondialdehyde (MDA) were determined to evaluate the different toxic effects. Chlorophyll a was induced by S-(+)-benalaxyl but inhibited by R-(−)-benalaxyl at 1 mg L−1. Chlorophyll b were both induced at 1 mg L−1, but S-(+)-form was fourfold higher than R-(−)-form. S-(+)-benalaxyl inhibited more CAT activities at 3 mg L−1 and 5 mg L−1, induced less SOD activity and MDA content at 5 mg L−1 than R-(−)-benalaxyl. Based on these data, enantioselectivity occurred in anti-oxidative stress when S. obliquus response to benalaxyl. In the biodegradation experiment, the half-lives of S-(+)-benalaxyl and R-(−)-benalaxyl were 4.07 d and 5.04 d, respectively, resulting in relative enrichment of the R-(−)-form. These results showed that toxic effects and biodegradation of benalaxyl in S. obliquus were enantioselective, and such enantiomeric differences must be taken into consideration in pesticide risk.  相似文献   

15.
Toxicity studies tend to use pure pesticides with single organisms. However, natural systems are complex and biological communities diverse. The organophosphate pesticide propetamphos (PPT) has been found exceeding regulatory limits (100 ng L−1) in rivers. We address whether solution properties affect the fate of Analar (Analar-PPT) or industrial PPT (PPT-Ind) propetamphos formulations and whether propetamphos and metal toxicant effects are additive, antagonistic or synergistic? The sorption, desorption, biodegradation and microbial toxicology of Analar-PPT and PPT-Ind were investigated in Conwy River and estuary sediment. Results showed elevated salinity enhanced PPT sorption, while higher salinities increased PPT-Ind retention. Higher dissolved organic matter (DOM) and low salinity slowed Analar-PPT biodegradation (1.9 × 10−3 h−1). Analar-PPT and PPT-Ind biodegradation was further reduced by low salinity, high DOM and dissolved Zn and Pb (6.3 × 10−4 h−1, 1100 h t½ for Analar-PPT; 7.5 × 10−4 h−1, 924 h t½ for PPT-Ind). Toxicity effects of PPT, Zn and Pb in equitoxic ratio were higher for PPT-Ind (4.7 μg PPT-Ind g−1; 581 μg Zn g−1; 395 μg Pb g−1) than for Analar-PPT (34.6 μg PPT g−1; 312 μg Zn g−1; 212 μg Pb g−1) whilst a toxicant ratio 1:100:10 suggested small quantities of Analar-PPT (EC10 = 0.06 μg g−1) affected microbial communities. The combined toxicity effect was more than additive. Thus, industrial formulations and pollutant mixtures should be considered when assessing environmental toxicity.  相似文献   

16.
Sodium metabisulfite is used in marine shrimp harvesting to prevent the occurrence of black spots. Shrimps are soaked in a sodium metabisulfite solution in ice, which is disposed of in sewages that run into marine canals, creating an environmental hazard. This study evaluates the toxicity and mutagenicity caused by sodium metabisulfite in sea waters and sediments collected in a shrimp farm in Cajueiro da Praia (Luis Correia), state of Piauí, Brazil, using the Allium cepa assay. Water and sediment samples were collected in the dry and in the rainy seasons, in three sites: upstream the shrimp farm (Site 1), at the point sodium metabisulfite is discharged (Site 2), and 100 m downstream the farm (Site 3). Three sample dilutions were used (50%, 25% and 10%) for all samples. A negative control (well water) and a positive control (copper sulfate 0.0006 mg mL−1) were used in each experiment. At the end of the 72-h exposure period, onion roots were measured and removed. Mutagenicity analysis included the determination of mitotic index, chromosomal aberrations and the detection of micronuclei; analysis of root size and mitotic index were used as an index of toxicity. The A. cepa assay revealed that the water and sediments samples collected in the Piauí coast contaminated with sodium metabisulfite induce toxicity. The results demonstrate that the assay may be used as a regular tool in the analysis of water parameters in shrimp farms in the coast of Piauí state, and in strategies to preserve the region’s marine ecosystem.  相似文献   

17.
Koelmans AA  Jonker MT 《Chemosphere》2011,84(8):1150-1157
It is unknown whether carbonaceous geosorbents, such as black carbon (BC) affect bioturbation by benthic invertebrates, thereby possibly affecting sediment-water exchange of sediment-bound contaminants. Here, we assess the effects of oil soot on polychlorinated biphenyl (PCB) mass transfer from sediment to overlying water, for sediments with and without tubificid oligochaeta as bioturbators. PCB levels were so low that toxicity to the oligochaeta played no role, whereas soot levels and binding affinity of PCBs to soot were so low that pore water PCB concentrations were not significantly affected by binding of PCBs to soot. This setup left direct effects of BC on bioturbation activity as the only explanation for any observed effects on mass transfer. Mass transfer coefficients (KL) for benthic boundary layer transport were measured by a novel flux method using Empore™ disks as a sink for PCBs in the overlying water. For the PCBs studied (logKow 5.2-8.2), KL values ranged from 0.2 to 2 cm × d−1 in systems without tubificids. Systems with tubificids showed KL values that were a factor of 10-25 higher. However, in the presence of oil soot, tubificids did not cause an increase in mass transfer coefficients. This suggests that at BC levels as encountered under field conditions, the mechanism for reduction of sediment-water transfer of contaminants may be twofold: (a) reduced mass transfer due to strong binding of the contaminants to BC, and (b) reduced mass transfer of contaminants due to a decrease in bioturbation activity.  相似文献   

18.
This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F L−1) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC50 of 7.5 mg F L−1 and an estimated safe concentration of 0.56 mg F L−1. The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent.  相似文献   

19.
Data from long-term groundwater sampling, limited coring, and associated studies are synthesised to assess the variability and intrinsic remediation/natural attenuation of a dissolved hydrocarbon plume in sulphate-rich anaerobic groundwater. Fine vertical scale (0.25- and 0.5-m depth intervals) and horizontal plume-scale (>400 m) characteristics of the plume were mapped over a 5-year period from 1991 to 1996. The plume of dissolved BTEX (benzene, toluene, ethylbenzene, xylene) and other organic compounds originated from leakage of gasoline from a subsurface fuel storage tank. The plume was up to 420 m long, less than 50 m wide and 3 m thick. In the first few years of monitoring, BTEX concentrations near the point of leakage were in approximate equilibrium with non-aqueous phase liquid (NAPL) gasoline. NAPL composition of core material and long-term trends in ratios of BTEX concentrations in groundwater indicated significant depletion (water washing, volatilisation and possibly biodegradation) of benzene from residual NAPL after 1992. Large fluctuations in BTEX concentrations in individual boreholes were shown to be largely attributable to seasonal groundwater flow variations. A combination of temporal and spatial groundwater quality data was required to adequately assess the stationarity of plumes, so as to allow inference of intrinsic remediation. Contoured concentration data for the period 1991 to 1996 indicated that plumes of toluene and o-xylene were, at best, only partially steady state (pseudo-steady state) due to seasonal groundwater flow changes. From this analysis, it was inferred that significant remediation by natural biodegradation was occurring for BTEX component plumes such as toluene and o-xylene, but provided no conclusive evidence of benzene biodegradation. Issues associated with field quantification of intrinsic remediation from groundwater sampling are highlighted. Preferential intrinsic biodegradation of selected organic compounds within the BTEX plume was shown to be occurring, in parallel with sulphate reduction and bicarbonate production. Ratios of average hydrocarbon concentrations to benzene for the period 1991 to 1992 were used to estimate degradation rates (half-lives) at various distances along the plume. The estimates varied with distance, the narrowest range being, for toluene, 110 to 260 days. These estimates were comparable to rates determined previously from an in situ tracer test and from plume-scale modelling.  相似文献   

20.
The effects of monoterpenes on the degradation of 14C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14C-2,4-DCP to 14CO2, after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg−1). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg−1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号