首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment   总被引:3,自引:0,他引:3  
Chang BV  Yuan SY  Ren YL 《Chemosphere》2012,87(5):535-541
This study investigated the aerobic degradation of tetrabromobisphenol-A (TBBPA) and changes in the microbial community in river sediment from southern Taiwan. Aerobic degradation rate constants (k1) and half-lives (t1/2) for TBBPA (50 μg g−1) ranged from 0.053 to 0.077 d−1 and 9.0 to 13.1 d, respectively. The degradation of TBBPA (50 μg g−1) was enhanced by adding yeast extract (5 mg L−1), sodium chloride (10 ppt), cellulose (0.96 mg L−1), humic acid (0.5 g L−1), brij 30 (55 μM), brij 35 (91 μM), rhamnolipid (130 mg L−1), or surfactin (43 mg L−1), with rhamnolipid yielding a higher TBBPA degradation than the other additives. For different toxic chemicals in the sediment, the results showed the high-to-low order of degradation rates were bisphenol-A (BPA) (50 μg g−1) > nonylphenol (NP) (50 μg g−1) > 4,4′-dibrominated diphenyl ether (BDE-15) (50 μg g−1) > TBBPA (50 μg g−1) > 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) (50 μg g−1). The addition of various treatments changed the microbial community in river sediments. The results also showed that Bacillus pumilus and Rhodococcus ruber were the dominant bacteria in the process of TBBPA degradation in the river sediments.  相似文献   

2.
Contaminated food through dietary intake has become the main potential risk impacts on human health. This study investigated concentrations of rare earth elements (REEs) in soil, vegetables, human hair and blood, and assessed human health risk through vegetables consumption in the vicinity of a large-scale mining area located in Hetian Town of Changting County, Fujian Province, Southeast China. The results of the study included the following mean concentrations for total and bio-available REEs of 242.92 ± 68.98 (135.85–327.56) μg g−1 and 118.59 ± 38.49 (57.89–158.96) μg g−1 dry weight (dw) in agricultural soil, respectively, and total REEs of 3.58 ± 5.28 (0.07–64.42) μg g−1 dw in vegetable samples. Concentrations of total REEs in blood and hair collected from the local residents ranged from 424.76 to 1274.80 μg L−1 with an average of 689.74 ± 254.25 μg L−1 and from 0.06 to 1.59 μg g−1 with an average of 0.48 ± 0.59 μg g−1 of the study, respectively. In addition, a significant correlation was observed between REEs in blood and corresponding soil samples (R2 = 0.6556, p < 0.05), however there was no correlation between REEs in hair and corresponding soils (p > 0.05). Mean concentrations of REEs of 2.85 (0.59–10.24) μg L−1 in well water from the local households was 53-fold than that in the drinking water of Fuzhou city (0.054 μg L−1). The health risk assessment indicated that vegetable consumption would not result in exceeding the safe values of estimate daily intake (EDI) REEs (100−110 μg kg−1 d−1) for adults and children, but attention should be paid to monitoring human beings health in such rare earth mining areas due to long-term exposure to high dose REEs from food consumptions.  相似文献   

3.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   

4.
Wu CC  Pu YS  Wu HC  Yang CY  Chen YC 《Chemosphere》2011,83(8):1188-1191
Prostate cancer associated with cadmium exposure may indicate a link between prostate specific antigen (PSA) and levels of blood cadmium (BCd) and urinary cadmium (UCd). Thus, these associations were investigated. We recruited 295 men, 50 years of age and above from a health check-up program at a health center as subjects of the study. They completed a self-reported questionnaire and provided fasting samples of blood and urine for cadmium assay. The assay was performed using atomic absorption spectrophotometry. Blood samples were also collected for the assays of total cholesterol and high-density lipoprotein measures. The means of BCd and UCd increased with age and the means of all subjects were 1.19 ± 1.04 μg L−1 and 1.37 ± 1.76 μg g−1 creatinine, respectively. The PSA levels were positively associated with the lipid levels, but reversely associated with BCd and UCd levels. The multivariate logistic regression analysis showed that men with PSA ? 4.0 ng mL−1 had an odds ratio (OR) of 0.4 (95% CI = 0.1-0.9) to have BCd > 0.49 μg L−1, and an OR of 0.4 (95% CI = 0.2-1.0) to have UCd > 0.45 μg g−1 creatinine. In conclusion, the PSA levels are reversely associated with BCd and UCd levels.  相似文献   

5.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

6.
Evaluation of Chitosan zerovalent Iron Nanoparticle (CIN) towards arsenic removal is presented. Addition of chitosan enhances the stability of Fe(0) nano particle. Prepared adsorbent was characterized by FT-IR, SEM EDX, BET and XRD. It was found that, with an initial dose rate of 0.5 g L−1, concentrations of As (III) and As (V) were reduced from 2 mg L−1 to <5 μg L−1 in less than 180 min and the adsorbent was found to be applicable in wide range of pH. Langmuir monolayer adsorption capacity was found to be 94 ± 1.5 mg g−1 and 119 ± 2.6 mg g−1 at pH 7 for As (III) and As (V) respectively. Major anions including sulfate, phosphate and silicate did not cause significant interference in the adsorption behavior of both arsenite and arsenate. The adsorbent was successfully recycled five times and applied to the removal of total inorganic arsenic from real life groundwater samples.  相似文献   

7.
The aim of this study was to determine and quantify effects of copper and lithium in tissues of early juveniles of the ramshorn snail, Marisa cornuarietis. For this purpose, hatchlings of M. cornuarietis were exposed for 7 days to a range of five different sublethal concentrations of copper (5, 10, 25, 50, and 75 μg Cu2+ L−1) and lithium (50, 100, 200, 1000, and 5000 μg Li+ L−1). Both metals changed the tissue structure of epidermis, hepatopancreas, and gills, varying between slight and strong reactions, depending on the copper and lithium concentration. The histopathological changes included alterations in epithelial and mucous cells of the epidermis, swelling of hepatopancreatic digestive cells, alterations in the number of basophilic cells, abnormal apices of digestive cells, irregularly shaped cilia and changes in the amount of mucus in the gills. The most sensible organ in M. cornuarietis indicating Cu or Li pollution is the hepatopancreas (LOECs were 10 μg Cu2+ L−1, or 200 μg Li+ L−1). In epidermis, mantle and gills relevant effects occurred with higher LOECs (50 μg Cu2+ L−1, or 1000 μg Li+ L−1). Base on LOECs, our results indicated that histopathological endpoints are high sensitivity to copper and lithium compared to endpoints for embryonic developmental toxicity.  相似文献   

8.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

9.
Toxicity studies tend to use pure pesticides with single organisms. However, natural systems are complex and biological communities diverse. The organophosphate pesticide propetamphos (PPT) has been found exceeding regulatory limits (100 ng L−1) in rivers. We address whether solution properties affect the fate of Analar (Analar-PPT) or industrial PPT (PPT-Ind) propetamphos formulations and whether propetamphos and metal toxicant effects are additive, antagonistic or synergistic? The sorption, desorption, biodegradation and microbial toxicology of Analar-PPT and PPT-Ind were investigated in Conwy River and estuary sediment. Results showed elevated salinity enhanced PPT sorption, while higher salinities increased PPT-Ind retention. Higher dissolved organic matter (DOM) and low salinity slowed Analar-PPT biodegradation (1.9 × 10−3 h−1). Analar-PPT and PPT-Ind biodegradation was further reduced by low salinity, high DOM and dissolved Zn and Pb (6.3 × 10−4 h−1, 1100 h t½ for Analar-PPT; 7.5 × 10−4 h−1, 924 h t½ for PPT-Ind). Toxicity effects of PPT, Zn and Pb in equitoxic ratio were higher for PPT-Ind (4.7 μg PPT-Ind g−1; 581 μg Zn g−1; 395 μg Pb g−1) than for Analar-PPT (34.6 μg PPT g−1; 312 μg Zn g−1; 212 μg Pb g−1) whilst a toxicant ratio 1:100:10 suggested small quantities of Analar-PPT (EC10 = 0.06 μg g−1) affected microbial communities. The combined toxicity effect was more than additive. Thus, industrial formulations and pollutant mixtures should be considered when assessing environmental toxicity.  相似文献   

10.
To evaluate the bioaccumulation and the risk associated to consumption of lipid-rich detritivorous fish, a comprehensive set of organic pollutants (n = 213) including polychlorinated biphenyls (PCBs), dioxin like PCBs (dlPCBs), chlorinated pesticides (CHLPs), chlorobenzenes (CBzs), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo dioxins and furans (PCDD/F), resolved (ALI) and unresolved aliphatic hydrocarbons (UCM) and linear alkyl benzenes (LABs) were analyzed in Sábalo fish (Prochilodus lineatus) collected in the polluted Metropolitan Buenos Aires coast and in migrating specimens. Fatty fish muscles (lipids: 74 ± 9.3% dry weight) contained homogeneous (24-51% variability) and very high-concentrations of organic pollutants ranging from 60 to 1300 μg g−1 fresh weight (fw) ALI + UCM; 10-40 μg g−1 fw LABs and PCBs; 0.1-1 μg g−1 fw dlPCBs, DDTs, chlordanes, CBzs and PBDEs; 0.01-0.1 μg g−1 fw mirex, endosulfans, aldrin, dieldrin, endrin and 0.07-0.2 ng g−1 PCDD/F. Total toxicity equivalents (TEQs) ranged from 60 to 395 pg g−1 fw (34 ± 17 and 213 ± 124 pg g−1 TEQs for PCDD/F and dlPCBs respectively). These are among the highest concentrations reported for fish and point out the remarkable ability of Sábalo to feed on anthropogenic organic-enriched particles and tolerate a high pollutant load. Contaminant signatures show partial alteration with still abundant lower molecular weight components indicating that fish feeds directly in the outfalls. Consumption limits based on reference doses ranged from 0.1 (PCBs) to >12 000 g d−1 (endosulfan) allowing a comprehensive risk-based ranking of contaminants in this long-range migrating, detritivorous fish.  相似文献   

11.
The increased use of silver nanomaterials presents a risk to aquatic systems due to the high toxicity of silver. The stability, dissolution rates and toxicity of citrate- and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) were investigated in synthetic freshwater and natural seawater media, with the effects of natural organic matter investigated in freshwater. When sterically stabilised by the large PVP molecules, AgNPs were more stable than when charge-stabilised using citrate, and were even relatively stable in seawater. In freshwater and seawater, citrate-coated AgNPs (Ag–Cit) had a faster rate of dissolution than PVP-coated AgNPs (Ag–PVP), while micron-sized silver exhibited the slowest dissolution rate. However, similar dissolved silver was measured for both AgNPs after 72 h in freshwater (500–600 μg L−1) and seawater (1300–1500 μg L−1), with higher concentrations in seawater attributed to chloride complexation. When determined on a mass basis, the 72-h IC50 (inhibitory concentration giving 50% reduction in algal growth rate) for Pseudokirchneriella subcapitata and Phaeodactylum tricornutum and the 48-h LC50 for Ceriodaphnia dubia exposure to Ag+ (1.1, 400 and 0.11 μg L−1, respectively), Ag–Cit (3.0, 2380 and 0.15 μg L−1, respectively) and Ag–PVP (19.5, 3690 and 2.0 μg L−1, respectively) varied widely, with toxicity in the order Ag+ > Ag–Cit > Ag–PVP. Micron-sized silver treatments elicited much lower toxicity than ionic Ag+ or AgNP to P. subcapitata. However, when related to the dissolved silver released from the nanoparticles the toxicities were similar to ionic silver treatments. The presence of natural organic matter stabilised the particles and reduced toxicity in freshwater. These results indicate that dissolved silver was responsible for the toxicity and highlight the need to account for matrix components such as chloride and organic matter in natural waters that influence AgNP fate and mitigate toxicity.  相似文献   

12.
We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L−1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L−1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L−1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L−1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L−1, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata.  相似文献   

13.
Byer JD  Struger J  Sverko E  Klawunn P  Todd A 《Chemosphere》2011,82(8):1155-1160
Concerns regarding the impacts of pesticides on aquatic species and drinking water sources have increased demands on water quality monitoring programs; however the costs of sample analysis can be prohibitive. In this study we investigated enzyme-linked immunosorbent assay (ELISA) as a cost-effective, high through-put method for measuring pesticide concentrations in surface waters. Seven hundred and thirty-nine samples from 158 locations throughout Ontario were analysed for atrazine and metolachlor from April to October 2007. Concentrations ranged from <0.1 to 3.91 μg L−1 (median = 0.12 μg L−1) for atrazine and from <0.1 to 1.83 μg L−1 (median = 0.09 μg L−1) for metolachlor. Peak concentrations occurred in late spring/early summer, in rural agricultural locations, and decreased over the remainder of the growing season for both herbicides. About 3% of the samples that had ELISA results occurring above the limit of quantification (0.10 μg L−1) were evaluated against gas chromatography-mass spectrometry (GC-MS). Linear regression analysis revealed a R2 value of 0.88 and 0.39, for atrazine and metolachlor, respectively. ELISA tended to overestimate concentrations for atrazine and metolachlor, most likely because the ELISA kits also detect their metabolites. Atrazine data suggest that ELISA may be used complementary with GC-MS analysis to enhance the spatial and temporal resolution of a water quality monitoring study. The commercially available metolachlor ELISA kit requires further investigation. ELISA may be used to detect atrazine and metolachlor in surface water samples, but it is not recommended as a quantitative replacement for traditional analytical methods.  相似文献   

14.
We collected female greater scaup (Aythya marila) on the Yukon-Kuskokwim Delta, Alaska during two breeding seasons to determine if concentrations of 18 trace elements in livers and eggs were elevated and if hepatic concentrations correlated with body condition or affected reproductive status. Fifty-six percent, 5%, and 42% of females, respectively, had elevated hepatic cadmium (Cd: >3 μg g−1 dry weight [dw]), mercury (Hg: >3 μg g−1 dw), and selenium (Se: >10 μg g−1 dw). Somatic protein and lipid reserves were not correlated with hepatic Cd or Hg, but there was a weak negative correlation between protein and Se. Hepatic Cd, Hg, and Se were similar in females that had and had not initiated egg production. In a sample of six eggs, 33% and 100%, respectively, contained Se and Hg, but concentrations were below embryotoxicity thresholds. We conclude that trace element concentrations documented likely were not adversely impacting this study population.  相似文献   

15.
Sediment quality guidelines (SQGs) assess the ability of bottom sediment to sustain healthy infauna and water quality guidelines (WQGs) provide protection for a designated percentage of aquatic species. Filter-feeding marine species, e.g. oysters and mussels, acquire food from particles in the water column and protection of these animals is not provided by SQGs or WQGs. The current work investigated the relationship between metal (Cu, Zn) concentrations in total and fine-fraction (<62.5 μm) surficial sediment digested in a range of acids and chelating agents and oyster tissue metal concentrations. A strong correlation between oyster tissue Cu and Zn concentrations and fine-fraction surficial sediment digested in 1 M HCl provided a sedimentary guideline which predicted tissue metal concentrations in oysters and established a level (<45 μg g−1 and <1000 μg g−1, respectively) for protecting oysters from exceeding human consumption levels (70 μg g−1 and 1000 μg g−1, respectively).  相似文献   

16.
We studied if the levels of copper released from antifouling treated nets used in finfish mariculture could affect the immune defense mechanism and/or induce oxidative stress in Dicentrarchus labrax, after short term exposure in laboratory experiments. Dissolved copper concentration released from the treated nets, copper bioavailability and a set of biomarkers responses were measured. Biomarkers included hemoglobin concentration, activities of lysozyme, total complement, respiratory burst, glutathione S-transferase and acetycholinesterase and concentration of thiobarbituric acid reactive substances. Results indicated elevated copper concentration in seawater (184 μg L−1) but low concentration in muscle (1.5 μg g−1) and liver (117 μg g−1). Copper bioavailability was independent of copper complexes with dissolved organic carbon. However, formation of copper complexes with other matrices could neither be excluded nor justified. The released copper from the treated nets did not induce oxidative stress but affected the immediate immune defense mechanism of the exposed fish making them more easily vulnerable to diseases. Consequently, copper-based antifouling treated nets could be a risk factor for D. labrax health.  相似文献   

17.
Choi M  Furlong ET  Moon HB  Yu J  Choi HG 《Chemosphere》2011,85(8):1406-1413
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.  相似文献   

18.
Sim WJ  Lee JW  Shin SK  Song KB  Oh JE 《Chemosphere》2011,82(10):1448-1453
We measured five estrogens in the wastewater samples from the municipal wastewater treatment plants (M-WWTPs), livestock wastewater treatment plants (L-WWTPs), hospital WWTPs (H-WWTPs) and pharmaceutical manufacture WWTPs (P-WWTPs) in Korea. The L-WWTPs showed the highest total concentration (0.195-10.4 μg L−1) of estrogens in the influents, followed by the M-WWTPs (0.028-1.15 μg L−1), H-WWTPs (0.068-0.130 μg L−1) and P-WWTPs (0.015-0.070 μg L−1). Like the influents, the L-WWTPs (0.003-0.729 μg L−1) and the M-WWTPs (0.001-0.299 μg L−1) also showed higher total concentration of estrogens in the effluents than the H-WWTPs (0.002-0.021 μg L−1) and P-WWTPs (0.011 μg L−1 in one sample). The L-WWTPs (37.5-543 μg kg−1, dry weight) showed higher total concentrations in sludge than the M-WWTPs (3.16-444 μg kg−1, dry weight) like the wastewater. The distribution of estrogens in the WWTPs may be affected by their metabolism in the human body, their transition through biological treatment processes, and their usage for livestock growth. Unlike the concentration results, the daily loads of estrogens from the M-WWTPs were the highest, which is related to the high capacities of WWTPs.  相似文献   

19.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

20.
The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. ‘Pusa chetki’ seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g−1 FW) and bound (0.545 μg g−1 FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g−1 FW) and bound IAA (2.45-7.78 μg g−1 FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g−1 FW) and bound (12.17 μg g−1 FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g−1 FW) and Cad (9.08 μg g−1 FW) contents were found for 10−9 M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g−1 FW), proline (4.97 mg g−1 FW), glycinebetaine (39.01 μmol mL−1), ascorbic acid (3.17 mg g−1 FW) and phytochelatins (65.69 μmol g−1 FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg−1 protein) and catalase (0.221 U mg−1 protein) and enhanced activities of glutathione reductase (7.14 U mg−1 protein), superoxide dismutase (15.20 U mg−1 protein) and ascorbate peroxidase (4.31 U mg−1 protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone. Reduced MDA (2.55 μmol g−1 FW) and H2O2 (33.24 μmol g−1 FW) contents were recorded for 10−9 M EBL supplemented to Cr (VI) stress over Cr (VI) treatment alone. Enhancement in free radical scavenging potential as indicated by higher values of 1,1-diphenylpicrylhydrazyl, deoxyribose and reducing power activity assays, and increased levels of phenols and soluble sugars also showed significant influence of EBL in alleviating Cr (VI) stress in radish seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号