首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mineral phosphorus (P) fertilizers processed from fossil reserves have enhanced food production over the past 50 years and, hence, the welfare of billions of people. Fertilizer P has, however, not only been used to lift the fertility level of formerly poor soils, but also allowed people to neglect the reuse of P that humans ingest in the form of food and excrete again as faeces and urine and also in other organic wastes. Consequently, P mainly moves in a linear direction from mines to distant locations for crop production, processing and consumption, where a large fraction eventually may become either agronomically inactive due to over-application, unsuitable for recycling due to fixation, contamination or dilution, and harmful as a polluting agent of surface water. This type of P use is not sustainable because fossil phosphate rock reserves are finite. Once the high quality phosphate rock reserves become depleted, too little P will be available for the soils of food-producing regions that still require P supplements to facilitate efficient utilization of resources other than P, including other nutrients. The paper shows that the amounts of P applied in agriculture could be considerably smaller by optimizing land use, improvement of fertilizer recommendations and application techniques, modified livestock diets, and adjustment of livestock densities to available land. Such a concerted set of measures is expected to reduce the use of P in agriculture whilst maintaining crop yields and minimizing the environmental impact of P losses. The paper also argues that compensation of the P exported from farms should eventually be fully based on P recovered from ‘wastes’, the recycling of which should be stimulated by policy measures.  相似文献   

2.
Phosphorus use-efficiency of agriculture and food system in the US   总被引:4,自引:0,他引:4  
Suh S  Yee S 《Chemosphere》2011,84(6):806-813
The rapid increase in human mobilization of phosphorus has raised concerns on both its supply security and its impact on the environment. Increasing the efficiency of phosphorus use is an approach to mitigate the adverse impacts associated with phosphorus consumption. This study estimates the life-cycle phosphorus use-efficiency of the US food system. A framework for accounting phosphorus stocks and flows is developed, and the account was populated with data. A map of phosphorus stocks and flows around the US food system is drawn and phosphorus use-efficiency was calculated. The results show that only 15% of the total phosphorus extracted from nature for the provision of food is eventually ingested by humans and the rest is lost to the environment. Major losses occur during the livestock, meat and dairy production and crop cultivation stage, where about 66% of the total phosphorus extracted is lost to the environment. The results also show that other losses of phosphorus including household food waste, mining waste, and fertilizer manufacturing waste are not negligible, which constitute about 19% of the total phosphorus extracted for food purpose. A data quality assessment and sensitivity analysis was performed to identify data quality hotspots and to envisage effective measures to improving phosphorus use-efficiency. Improving yields of livestock and crop cultivation without additional phosphorus input and reducing household food waste are shown to be effective measures to improve life-cycle phosphorus use-efficiency. The results highlight the need of a concerted effort by all entities along the life-cycle for efficient use of phosphorus.  相似文献   

3.

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice–wheat and rice–maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69–100%) and irrigation (23–27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6–16%), net energy (14–26%), energy ratio (25–33%), and energy productivity (23–34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the “conservative hypothesis,” which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

  相似文献   

4.
Baker LA 《Chemosphere》2011,84(6):779-784
Achieving better understanding phosphorus (P) flows through urban ecosystems is needed to conserve P, as non-renewable phosphate rock deposits become depleted and the global human population increases. A baseline mass flow analysis (MFA) for P developed for the Twin Cities Watershed (TCW, which includes most of the Minneapolis-St. Paul metropolitan region) showed that most P input was stored in the system (65%) or leaked from it (31%); only 4% was deliberately exported as useful products. In a realistic, comprehensive conservation scenario P input was reduced by 15%; deliberate export of P in the form of sewage sludge, food waste, and landscape waste was 68% of P input. In this scenario, increased deliberate export was accomplished by decreasing leakage (to 9% of input) and storage (to 23% of input). If used as agricultural fertilizer, the deliberately exported P in the conservation scenario would support about half of the food production required by the TCW.  相似文献   

5.

Compost was prepared from wheat straw enriched with Rajasthan rock phosphate and Aspergillus awamori. The resulting phospho-compost along with phosphorus enriched FYM, mineral fertilizer (rock phosphate) and super phosphate were evaluated for their individual contribution in improving organic matter status, P availability, and enzymatic activities of soil under wheat crop grown in a micro plot. The results showed that total organic carbon, nitrogen, microbial biomass, and humus content (an index of organic matter status of soil) of soil was highest when farmyard manure (FYM) after its enrichment with 12.5% rock phosphate was applied. Microbial enriched phospho-compost was the product yielding highest soil available phosphorus, phosphorus uptake, urease, and cellulase activities. However, FYM amended with 25% rock phosphate resulted in the greatest enhancement of β-glucosidase. Measured parameters indicated a sure improvement of chemical and biological activities of soil after the application of phosphorus enriched organic amendments compared to the commercial fertilizer commonly used by the Indian farmers.  相似文献   

6.
Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 μg L−1. Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH4-oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296 ± 0.063 μg g−1, n = 56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh.  相似文献   

7.
Compost was prepared from wheat straw enriched with Rajasthan rock phosphate and Aspergillus awamori. The resulting phospho-compost along with phosphorus enriched FYM, mineral fertilizer (rock phosphate) and super phosphate were evaluated for their individual contribution in improving organic matter status, P availability, and enzymatic activities of soil under wheat crop grown in a micro plot. The results showed that total organic carbon, nitrogen, microbial biomass, and humus content (an index of organic matter status of soil) of soil was highest when farm yard manure (FYM) after its enrichment with 12.5% rock phosphate was applied. Microbial enriched phospho-compost was the product yielding highest soil available phosphorus, phosphorus uptake, urease, and cellulase activities. However, FYM amended with 25% rock phosphate resulted in the greatest enhancement of beta- glucosidase. Measured parameters indicated a sure improvement of chemical and biological activities of soil after the application of phosphorus enriched organic amendments compared to the commercial fertilizer commonly used by the Indian farmers.  相似文献   

8.
Phosphorus flows in Swedish agriculture and food chain were studied by material flow analysis. The system studied included agriculture, food consumption, related waste and wastewater from private households and municipal wastewater treatment plants. Swedish farmland had net annual phosphorus inputs of ~12 600 metric tons (4.1 kg P ha−1) in 2008–2010. The total import of phosphorus in food and feed to Sweden exceed imports of phosphorus in fertilizers. Despite strict animal density regulations relating to manure phosphorus content, phosphorus is accumulating on Swedish animal farms. The total quantity of manure produced greatly exceeds imported mineral phosphorus fertilizer and almost equals total phosphorus inputs to Swedish farmland.  相似文献   

9.
Hou L  Liu M  Ding P  Zhou J  Yang Y  Zhao D  Zheng Y 《Chemosphere》2011,83(7):917-924
This study investigated the effects of sediment dewatering on the phosphorus transformations concerning about the production and emission of phosphine in the intertidal marsh of the Yangtze Estuary. The concentrations of matrix-bound phosphine ranged from 18.62-72.53 ng kg−1 and 31.14-61.22 ng kg−1 within the August and January exposure incubations, respectively. The responses of matrix-bound phosphine concentrations to sediment dessication demonstrate that the production (or accumulation) of matrix-bound phosphine significantly increased with water loss at the start of the emersion incubations. However, further dehydration inhibited the formation of matrix-bound phosphine in sediments. The significant correlations of matrix-bound phosphine with the organic-P bacteria abundance and alkaline phosphatase activities implicate that the production of matrix-bound phosphine within the dessication incubations was linked closely to the microbial decomposition of organic P. The emissions of phosphine generally decreased with sediment dewatering, with the fluxes of 7.51-96.73 ng m−2 h−1 and 5.34-77.74 ng m−2 h−1 over the exposure incubations of both August and January, respectively. Also, it is observed that the releases of phosphine during the entire exposure periods were affected not only by its production but also by sediment water and redox conditions.  相似文献   

10.
Global potential of phosphorus recovery from human urine and feces   总被引:2,自引:0,他引:2  
Mihelcic JR  Fry LM  Shaw R 《Chemosphere》2011,84(6):832-839
This study geospatially quantifies the mass of an essential fertilizer element, phosphorus, available from human urine and feces, globally, regionally, and by specific country. The analysis is performed over two population scenarios (2009 and 2050). This important material flow is related to the presence of improved sanitation facilities and also considers the global trend of urbanization. Results show that in 2009 the phosphorus available from urine is approximately 1.68 million metric tons (with similar mass available from feces). If collected, the phosphorus available from urine and feces could account for 22% of the total global phosphorus demand. In 2050 the available phosphorus from urine that is associated with population increases only will increase to 2.16 million metric tons (with similar mass available from feces). The available phosphorus from urine and feces produced in urban settings is currently approximately 0.88 million metric tons and will increase with population growth to over 1.5 million metric tons by 2050. Results point to the large potential source of human-derived phosphorus in developing regions like Africa and Asia that have a large population currently unserved by improved sanitation facilities. These regions have great potential to implement urine diversion and reuse and composting or recovery of biosolids, because innovative technologies can be integrated with improvements in sanitation coverage. In contrast, other regions with extensive sanitation coverage like Europe and North America need to determine how to retrofit existing sanitation technology combined that is combined with human behavioral changes to recover phosphorus and other valuable nutrients.  相似文献   

11.
Phosphorus (P), a plant macronutrient, must be adequately supplied for crop growth. In Germany, many soils are high in plant-available P; specifically in arable farming, P fertilizer application has been reduced or even omitted in the last decade. Therefore, it is important to understand how long these soils can support sustainable crop production, and what concentrations of soil P are required for it. We analyzed a 36-year long-term field experiment regarding the effects of different P application and liming rates on plant growth and soil P concentrations with a crop rotation of sugar beet, wheat, and barley. Sugar beet reacted to low soil P and low soil pH levels more sensitively than wheat, which was not significantly affected by the long-term omitted P application. All three crop species showed adequate growth at soil P levels lower than the currently recommended levels, if low soil pH was optimized by liming. The increase in efficacy of soil and fertilizer P by reduced P application rates therefore requires the adaptation of the soil pH to a soil type-specific optimal level.  相似文献   

12.
Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution.  相似文献   

13.
Qiu G  Song Y  Zeng P  Xiao S  Duan L 《Chemosphere》2011,84(2):241-246
Fosfomycin pharmaceutical wastewater contains highly concentrated and refractory antibiotic organic phosphorus (OP) compounds. Wet air oxidation (WAO)-phosphate crystallization process was developed and applied to fosfomycin pharmaceutical wastewater pretreatment and phosphorus recovery. Firstly, WAO was used to transform concentrated and refractory OP substances into inorganic phosphate (IP). At 200 °C, 1.0 MPa and pH 11.2, 99% total OP (TOP) was transformed into IP and 58% COD was reduced. Subsequently, the WAO effluent was subjected to phosphate crystallization process for phosphorus recovery. At Ca/P molar ratio 2.0:1.0 or Mg/N/P molar ratio 1.1:1.0:1.0, 99.9% phosphate removal and recovery were obtained and the recovered products were proven to be hydroxyapatite and struvite, respectively. After WAO-phosphate crystallization, the BOD/COD ratio of the wastewater increased from 0 to more than 0.5, which was suitable for biological treatment. The WAO-phosphate crystallization process was proven to be an effective method for phosphorus recovery and for fosfomycin pharmaceutical wastewater pretreatment.  相似文献   

14.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

15.
Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer + rapeseed residue (N70 + R), 30% mineral N fertilizer + rapeseed residue (N30 + R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70 + R and N30 + R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.  相似文献   

16.
Concerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields. Plants possess a large number of adaptive responses to Pi (orthophosphate) limitation that provide potential raw materials to enhance Pi scavenging abilities of crop plants. Understanding and engineering these adaptive responses to increase the efficiency of crop capture of natural and fertilizer Pi in soils is one way to optimize Pi use efficiency (PUE) and, together with other approaches, help to meet the P sustainability challenge in agriculture. Research on the molecular and physiological basis of Pi uptake is facilitating the generation of plants with enhanced Pi use efficiency by genetic engineering. Here we describe work done in this direction with emphasis on the up-regulation of plant proton-translocating pyrophosphatases (H+-PPases).  相似文献   

17.
Dhillon SK  Hundal BK  Dhillon KS 《Chemosphere》2007,66(9):1734-1743
Greenhouse experiments were conducted to study the bioavailability of selenium (Se) to sorghum (Sorghum bicolor L.), maize (Zea mays L.) and berseem (Trifolium alexandrinum L.) fodders in a sandy loam soil amended with different levels of Se-rich wheat (Triticum aestivum L.) and raya (Brassica juncea L. Czern) straw containing 53.3 and 136.7microg Seg(-1), respectively. Each of the fodder crops was grown after incorporation of Se-rich materials either individually or in a sequence - sorghum-maize-berseem by incorporating Se-rich straws only to the first crop. Application of Se-rich straws to each crop, even at the greatest rate of 1%, did not have any detrimental effect on dry matter yield of different crops. With increase in the level of wheat straw from 0% to 1%, Se content in sorghum and maize plants increased to greatest level of 1.3 and 1.5microg g(-1), respectively, at 0.3% of applied straw and thereafter it decreased consistently. In case of raya straw, the greatest Se content in sorghum (2.3microg g(-1)) and maize (3.0microg g(-1)) was recorded at 0.3% and 0.4% of the applied straw, respectively. Unlike sorghum and maize fodders, Se content in all the four cuts of berseem continued to increase with increase in the level of applied straws and for different cuts of berseem it varied from 1.6 to 2.3 and 3.4 to 4.3microg g(-1) in case of wheat and raya straw, respectively. Similar variations in Se content of different fodder crops were recorded when these were grown in the sequence - sorghum-maize-berseem; but Se content was 2-4 times lower than when each crop was grown with fresh application of Se-rich straw. None of the fodders absorbed Se in levels toxic for animal consumption (>5microg g(-1)) even at the greatest level of applied straw. Of the total Se added through Se-rich straws, utilization of Se was not more than 2% in case of sorghum and maize crops and up to 5% in case of berseem. At the time of sowing of sorghum, hot water soluble Se (HWS-Se) in soils treated with different levels of Se-rich wheat and raya straw, respectively, varied from 18 to 36 and 18 to 79microg kg(-1). Whereas in case of berseem, it varied from 33 to 101 and 33 to 154microg kg(-1), respectively. HWS-Se present at the sowing time of berseem was significantly correlated with Se content of all the four cuts in the soil treated with Se-rich straws; the coefficients of correlation 'r' varied between 0.79 (p0.05) and 0.99 (p0.001). Selenium-rich materials supplied significant amounts of S, P and micronutrients to the growing fodder crops. These investigations suggest that Se-rich raya and wheat straw may be disposed off safely in soils used for growing fodders.  相似文献   

18.
Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24 h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg−1. Sorption and desorption studies were conducted on the <2.0 mm material and three size fractions within the <2.0 mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ?2 h). The effect of DOC was minimal at <150 mg DOC L−1, but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L−1. The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0 mm) are ∼44 g kg−1 and >75 g kg−1, respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg-l, but increased (<9% of the P sorbed) at cumulative P loads >70 g kg−1. The <2.0 mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.  相似文献   

19.
The effects of arbuscular mycorrhizal fungi (AMF) - Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg−1. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses.  相似文献   

20.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号