首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu XY  Fan J  Zhang KL  Wang JJ 《Chemosphere》2012,87(10):1155-1160
In this work, Bi4NbxTa(1−x)O8I photocatalysts have been synthesized by solid state reaction method and characterized by powder X-ray diffraction, scanning electron microscope and UV-Vis near infrared diffuse reflectance spectroscopy. The photocatalytic activity of these photocatalysts was evaluated by the degradation of methyl orange (MO) in aqueous solutions under visible light, UV light and solar irradiation. The effects of catalyst dosage, initial pH and MO concentration on the removal efficiency were studied, and the photocatalytic reaction kinetics of MO degradation as well. The results indicated that Bi4NbxTa(1−x)O8I exhibited high photocatalytic activity for the removal of MO in aqueous solutions. For example, the removal efficiency of MO by Bi4Nb0.1Ta0.9O8I was as high as 92% within 12 h visible light irradiation under the optimal conditions: initial MO concentration of 5-10 mg L−1, catalyst dosage of 6 g L−1 and natural pH (6-8), the MO molecules could be completely degradated by Bi4Nb0.1Ta0.9O8I within 40 min under UV light irradiation, and the photodegradation efficiency reaches to 60% after 7 h solar irradiation. Furthermore, the photocatalytic degradation of Bisphenol A (BPA) was also investigated under visible light irradiation. It is found that 99% BPA could be mineralized by Bi4Nb0.1Ta0.9O8I after 16 h visible light irradiation. Through HPLC/MS, BOD, TOC, UV-Vis measurements, we determined possible degradation products of MO and BPA. The results indicated that MO was degradated into products which are easier to be biodegradable and innocuous treated, and BPA could be mineralized completely. Furthermore, the possibility for the photosensitization effect in the degradation process of MO under visible light irradiation has been excluded.  相似文献   

2.
This research focused on photocatalytic degradation of imidacloprid, thiamethoxam and clothianidin employing a tailor-made photoreactor with six polychromatic fluorescent UVA (broad maximum at 355 nm) lamps and immobilised titanium dioxide (TiO2) on glass slides. The disappearance was followed by high pressure liquid chromatography (HPLC-DAD) analyses, wherein the efficiency of mineralization was monitored by measurements of total organic carbon (TOC). Within 2 h of photocatalysis, all three neonicotinoids were degraded following first order kinetics with rate constants k = 0.035 ± 0.001 min−1 for imidacloprid, k = 0.019 ± 0.001 min−1 for thiamethoxam and k = 0.021 ± 0.000 min−1 for clothianidin. However, the rate of mineralization was low, i.e. 19.1 ± 0.2% for imidacloprid, 14.4 ± 2.9% for thiamethoxam and 14.1 ± 0.4% for clothianidin. This indicates that several transformation products were formed instead. Some of them were observed within HPLC-DAD analyses and structures were proposed according to the liquid chromatography-electro spray ionization tandem mass spectrometry analyses (LC-ESI-MS/MS). The formation of clothianidin, as thiamethoxam transformation product, was reported for the first time.  相似文献   

3.
Wang J  Chen S  Nie X  Tian M  Luo X  An T  Mai B 《Chemosphere》2012,89(7):844-849
The photolytic degradation of decabromodiphenyl ethane (DBDPE), an alternative flame retardant to decabromodiphenyl ether, was investigated in a variety of matrixes (n-hexane, tetrahydrofuran, methanol/water, humic acid/water, and silica gel) by irradiation under ultraviolet light and in n-hexane under natural light. Photolytic degradation of DBDPE occurs in all the matrixes investigated within the irradiation period (<320 min). The degradation experiments showed varied reaction rates, dependent on the matrixes, with increasing half-lives (t1/2) in the order of tetrahydrofuran (t1/2 = 6.0 min) > n-hexane (t1/2 = 16.6 min) > humic acid/water (30 < t1/2 < 60) > silica gel (t1/2 = 75.9 min) > methanol/water (t1/2 > 240 min). The reaction in tetrahydrofuran, n-hexane, and silica gel matrixes can be described by the pseudo first order kinetics. Nevertheless, the matrixes have little effect on the degradation product distributions of DBDPE. A numbers of debrominated intermediates were identified. The degradation involves the initial formation of nona-BDPEs and the subsequent decomposition of these congeners to lower brominated congeners (octa- and hepta-BDPEs) within the irradiation time. To our knowledge, the present work is the first attempt to investigate the photolytic degradation kinetics and the identification of intermediates, as well as the degradation mechanism, during the degradation of DBDPE. Further research is needed to understand the photolytic degradation pattern of DBDPE in the natural environment.  相似文献   

4.
In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO3), tin (IV) oxide (SnO2) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na2S2O8) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t½) ranged from 8 to 27 min (t30W = 0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na2S2O8 system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L−1).  相似文献   

5.
Song C  Chen P  Wang C  Zhu L 《Chemosphere》2012,86(8):853-859
Degradation of perfluorooctanoic acid (PFOA) is of great importance due to its global distribution, persistence and toxicity to bioorganisms. In present study, a composite TiO2 with multiple wall carbon nano-tubes (MWCNTs) was synthesized using sol-gel method and it was used as photocatalyst to degrade PFOA in water. The prepared composite catalyst displayed significant absorption in UV to visible light region. The loading content of TiO2 on MWCNTs could be adjusted by changing the ratio of precursor to MWCNTs. Due to the combined effect of the adsorption ability and e transport capacity of MWCNT, the composites displayed much higher photocatalytic ability to PFOA as compared to pure TiO2 under UV irradiation. The photocatalyst prepared with 10:1 of tetrabutyl titanate/MWCNT was the most effective. With the optimal dosage at 1.6 g L−1, almost 100% of PFOA was degraded in acid medium after irradiation for 8 h. It was proposed that PFOA were mainly degraded by stepwise losing a moiety of CF2.  相似文献   

6.
Sun C  Zhao J  Ji H  Ma W  Chen C 《Chemosphere》2012,89(4):420-425
There have been serious concerns about polybromodiphenyl ethers (PBDEs) in the environment because of their global distribution and bioaccumulation. Owing to strong hydrophobicity of PBDEs, the regular photocatalytic system, in which the substrate is solvated in the bulk solution, is not applicable to the removal of the PBDEs in water. In this work, the photocatalytic reduction degradation of decabromodiphenyl ether (BDE209), the most-used PBDEs, was investigated in aqueous system, by pre-adsorbing it on the surface of photocatalyst. It was found that the preloaded BDE209 underwent efficient reductive debromination in aqueous system under irradiation with wavelength larger than 360 nm in the presence of electron donors such as methanol. Our experiments further show that such a preloaded system exhibits different characteristics from that in the organic solution. The meta-debrominated intermediate is predominant in the present system, while the ortho-debrominated one is the main nona-BDE products in the organic solution. In addition, different from other photocatalytic system, the pH has little effect on the photocatalytic reaction. We propose that these differences are originated from the formation of overlayer of hydrophobic BDE209 to limit the motion of BDE209 and the access of water and H+/OH to the TiO2 surface.  相似文献   

7.
Fenoll J  Ruiz E  Hellín P  Flores P  Navarro S 《Chemosphere》2011,85(8):1262-1268
The efficiency of ZnO and TiO2 suspensions in the photocatalytic degradation of two fungicides (cyprodinil and fludioxonil) in leaching water was investigated. The experiments were carried out at pilot plant scale using compound parabolic collectors under natural sunlight. The blank experiments for both irradiated compounds solutions showed that both oxides strongly enhanced the removal of the fungicides. The addition of an oxidant (Na2S2O8) to the ZnO or TiO2 increased the rate of photooxidation. The degradation of cyprodinil and fludioxonil followed first order kinetics according to the Langmuir-Hinshelwood model. Complete degradation of both fungicides was achieved within 4 h (t30W = 18 min) when treated with illuminated ZnO. The disappearance time (DT75), when referred to the normalized illumination time (t30W), was lower than 40 and 550 min (t30W = 2 and 40 min) for both fungicides using ZnO or TiO2, respectively. ZnO appeared to be more effective in cyprodinil and fludioxonil oxidation than TiO2 probably due to its nonstoichiometry.  相似文献   

8.
In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.  相似文献   

9.
Parameters that influence the zero valent iron mediated degradation of the pharmaceutical diazepam (DZP) were evaluated including the iron concentration and its pre-treatment, the effect of complexation with EDTA and oxic versus anoxic condition. It was observed that acid pre-treatment of iron particles is important for degradation efficiency and that H2SO4 is a better choice than HCl, resulting in higher degradation of DZP. Under oxic conditions, the degradation of DZP achieved 96% after 60 min using Fe0 (25 g L−1) pre-treated with H2SO4 in the presence of EDTA (119 mg L−1), while mineralization achieved around 60% after the same time. Under anoxic conditions, degradation occurred, however at lower extent, achieving 67% after 120 min. The addition of EDTA improved the treatment efficiency in 20% leading to 99% DZP degradation after 120 min. The first intermediates formed during DZP degradation were identified using LC/MS analysis and revealed the formation of mono- and di-hydroxylated products from DZP during Fe0/EDTA/O2 degradation, which evidences that OH was the main oxidizing species formed in this process.  相似文献   

10.
Chemical extractions have been shown to measure the biodegradable fraction of aromatic contaminants in soil; however, there is little research on the chemical prediction of aliphatic hydrocarbon degradation. The aim of this study was to investigate the potential for cyclodextrin extractions to predict hexadecane biodegradation in soil. Soils were amended with 10 or 100 mg kg−1 of a model alkane n-hexadecane and 100 Bq g−114C-n-hexadecane. Correlations between the extents of mineralisation and extractions of the 14C-contaminant were determined. Solvent shake extractions and aqueous CaCl2 extractions were poor predictors of hexadecane bioaccessibility. However, the novel HP-α-CD shake extraction showed close correlation (r2 = 0.90, n = 36, p < 0.05) to the mineralisation data. This novel extraction technique has the potential to be used to assess the biodegradable aliphatic hydrocarbon fraction in contaminated soils.  相似文献   

11.
Background, aim, and scope  The pulp and paper industry is the sixth largest polluter discharging a variety of gaseous, liquid, and solid wastes into the environment. Effluents from bleached Kraft mill effluents (BKME) are polluting waters to a great extent These effluents cause considerable damage to the receiving waters if discharged untreated since they have high levels of biological oxygen demand (BOD), chemical oxygen demand (COD), chlorinated compounds (measured as AOX), suspended solids (mainly fibers), fatty acids, tannins, resin acids, lignin and its derivatives, sulfur and sulfur compounds, etc. This study aimed to remove adsorbed organic halogen (AOX), total nitrogen, and lignin-degrading products in the wastewater (4,500 m3/h) from the paper mill in the pulp and paper industry, which is discharged to sea from a plant located in western Turkey. Materials and methods  The photocatalytic degradation of AOX, total nitrogen, and chlorinated lignin in BKME have been investigated in different parameters, such as time, H2O2 and TiO2 concentration. In addition, for investigating the effect of chlorine on the removal of lignin, pure lignin solution was prepared in equal amounts to chlorinated lignin degradation products found in BKME. The same experiments were conducted for this solution. Experiments were carried out in photocatalytic reactor made of Pyrex glass. The mercury lamp was used as a radiation source. All irradiation was carried out under constant stirring. The existence of dissolved O2 is an important factor which increases the photocatalytic degradation. Hence, we used an air pump for the aeration of the wastewater solutions. The temperature of the wastewater was controlled and adjusted to 25°C by thermostat pump in conjunction with a cooler. At the end of all experiments, AOX, total nitrogen and lignin concentrations were analyzed according to standard methods. All experiments were performed in duplicate and average values were used. Results and discussion  When the effect of H2O2 and time were investigated, it was observed that the AOX concentration increased from 3.0 to 11.0 mg/L by only UV. However, when H2O2 was added, AOX concentration decreased from approximately 3.0 to 0.0 mg/L. The optimal conditions for the removal of AOX appear to be an initial H2O2 concentration of 20.0 mL/L and reaction time of 50 min. In addition, at the same experiment conditions, it was seen that the total nitrogen concentration decreased from 23.0 to 15.0 mg/L by only UV and by increasing H2O2 concentration, the concentration of 20.0 mL/L H2O2 appears to be optimal (9.0 mg/L). The AOX, total nitrogen and lignin degradation products and pure lignin go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. The kinetics for the degradation of AOX, total nitrogen and lignin degradation products followed a pseudo-first order law with respect to the products, and the degradation rates (min−1) for the UV/TiO2/H2O2 system were higher than that of the corresponding values for the UV/H2O2 system. Conclusions  The AOX, total nitrogen and lignin concentration go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. It was found that the UV/TiO2/H2O2 system has proved capable of the degradation of total nitrogen as well as chlorinated and degraded lignin in BKME. Recommendations and perspectives  The photocatalytic process can be considered a suitable alternative for the remove of some compounds from the BKME. Nevertheless, further studies should be carried out to confirm the practical feasibility of BKME. Another result obtained from the study is that pre-purification carried out with UV/TiO2/H2O2 photocatalytic process may constitute an important step for further purification processes such as adsorption, membrane processes, etc.  相似文献   

12.
Reduction of viable airborne Staphylococcus epidermidis and Aspergillus niger spore concentrations using two types of photocatalytic fluorescent lamps under controlled environmental conditions (25 vs. 35 °C and 55 vs. 75% relative humidity) were investigated. Visible white-light and UVA black light were in-house spray-coated with TiO2 and then compared with a commercially coated visible white-light for microbial concentration reduction. The white-light photocatalytic lamps reduced the concentration of culturable S. epidermidis up to 92% independent of temperature or humidity change, while the black light photocatalytic lamps completely inactivated the culturable bacteria at 25 °C, 55% relative humidity. Humidity seemed to alleviate UVA damage since better bacteria survival was found. For A. niger spores, rising humidity or temperature could lower their concentration or drop their culturabilities so that a difference between the natural decay and photocatalytic disinfection could not be distinguished. Reductions of total bacteria and total fungi concentrations using these lamps were also examined under uncontrolled environmental conditions in an office and a waste-storage room. It was found that photocatalytic lamps could reduce total culturable bacteria concentration from 9 to 97% and total culturable fungi concentration from 3 to 95% within irradiation time of 30-480 min, respectively. Insignificant difference in concentration reduction among these photocatalytic lamps was pronounced.  相似文献   

13.
The degradation of paracetamol in aqueous solutions in the presence of hydrogen peroxide was carried out by photochemistry, electrolysis and photoelectrolysis using modified 100 pores per inch reticulated vitreous carbon electrodes. The electrodes were coated with catalysts such as TiO2 and CuO/TiO2/Al2O3 by electrophoresis followed by heat treatment. The results of the electrolysis with bare reticulated vitreous carbon electrodes show that 90% paracetamol degradation occurs in 4 h at 1.3 V vs. SCE, forming intermediates such as benzoquinone and carboxylic acids followed by their complete mineralisation. When the electrolysis was carried out with the modified electrodes such as TiO2/RVC, 90% degradation was achieved in 2 h while with CuO/TiO2/Al2O3/RVC, 98% degradation took only 1 h. The degradation was also carried out in the presence of UV reaching 95% degradation with TiO2/RVC/UV and 99% with CuO/TiO2/Al2O3/RVC/UV in 1 h. The reactions were followed by spectroscopy UV-Vis, HPLC and total organic carbon analysis. These studies show that the degradation of paracetamol follows a pseudo-first order reaction kinetics.  相似文献   

14.
针对实际水处理中对催化剂性能的要求,以光催化降解苯酚溶液作为探针反应,考察了玻璃纤维网上负载的TiO2膜催化剂长期使用条件下的稳定性,研究了催化剂在自来水中使用失活后的再生方法。结果表明,经过50次使用之后,膜催化剂120 min反应对苯酚的降解率从100%下降至83%,总体上看,所制催化剂还是具有相当好的稳定性;在反应器中用蒸馏水浸泡配合光催化反应对TiO2膜催化剂进行原位再生是一种可行的再生途径。  相似文献   

15.
The fate and transport of antibiotics in natural water systems is controlled in part by interactions with nanometer (10−9 m) metal oxide particles. Experiments were performed by mixing solutions of ampicillin (AMP), a common, penicillin-class human and veterinary antibiotic, with 25 nm-TiO2 (anatase) nanoparticles at different pH conditions. Both sorption and degradation of AMP were observed in the AMP-nanoparticle solutions. For AMP concentrations from ∼3 μM to 2.9 mM the overall AMP removal from solution can be described by linear isotherms with removal coefficients (Kr) of 3028 (±267) L kg−1 at pH 2, 11,533 (±823) L kg−1 at pH 4, 12,712 (±672) L kg−1 at pH 6, and 1941 (±342) L kg−1 at pH 8. Mass spectral analysis of AMP solutions after removal of the solid nanoparticles yielded ions that indicate the presence of peniclloic acid, penilloic acid and related de-ammoniated by-products as possible compounds resulting from the degradation of AMP at the TiO2 surface.  相似文献   

16.
Liu DR  Jiang YS  Gao GM 《Chemosphere》2011,83(11):1546-1552
N-doped NaTaO3 compounds (NaTaO3−xNx) with nano-cubic morphology were successfully synthesized by one-step hydrothermal method and Methyl Orange (MO) was used as a model dye to evaluate their photocatalytic efficiency under visible-light irradiation. The as-prepared NaTaO3−xNx samples were characterized by various techniques, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectra and GC-MS. The results indicate that NaTaO3−xNx displays a pure perovskite structure when the synthesis temperature is higher than 180 °C. Moreover, as observed by SEM images, the particles of resultant NaTaO3−xNx show cubic morphology with the edge length of 200-500 nm, which can be easily removed by filtration after photocatalytic reaction. Doping of N increases the photocatalytic activity of NaTaO3, and NaTaO2.953N0.047 shows the highest visible-light photocatalytic activity for the degradation of MO. Based on the experiment results, a possible mechanism of the photocatalysis over NaTaO3−xNx and the photodegradation pathway of MO were proposed.  相似文献   

17.
Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO2 photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10 h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m−2, respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO2 photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water.Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation.  相似文献   

18.
The effects of monoterpenes on the degradation of 14C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14C-2,4-DCP to 14CO2, after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg−1). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg−1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants.  相似文献   

19.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号