首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Four sediment cores collected in the Seine River basin and dated between 1916 and 2003 were analyzed for lead concentrations and isotopic composition. In all four cores, the measured Pb concentration (up to 460 mg kg−1) lies significantly above the natural background (27-40 mg kg−1), although a significant decrease (down to 75 mg kg−1) was observed during the second half of the 20th century which can be explained by the reduction of lead emissions. The 206Pb/207Pb ratio measured in these samples indicates that the main source of Pb used in the Paris conurbation is characterized by a “Rio Tinto” signature (defined as 206Pb/207Pb = 1.1634 ± 0.0001). A high contribution, up to 25%, from the leaded gasoline (characterized by 206Pb/207Pb = 1.08 ± 0.02) is revealed in the Seine River downstream Paris, indicating that lead from the leaded gasoline is preferentially released to the river.The dominating Pb signature in the Paris conurbation that is currently sampled through incinerators fumes (206Pb/207Pb = 1.1550 ± 0.0005) and waste water treatment plant (206Pb/207Pb = 1.154 ± 0.002), represents a mixture of highly recycled lead from the Rio Tinto mine and lead from leaded gasoline (imprinted by the low 206Pb/207Pb of the Broken Hill mine). This signature is called “urban” rather than “industrial”, because it is clearly distinct from the Pb that is found in areas contaminated by heavy industry, i.e. the heavy industries located on the Oise River which used lead from European ores characterized by high 206Pb/207Pb ratios (∼1.18-1.19) and possibly a minor amount of North American lead (206Pb/207Pb ratios > 1.20). The “urban” signature is also found in a rural area upstream of Paris in the 1970’s. At the Seine River mouth in 2003, Pb with an urban signature represents 70% of the total Pb sediment content, with the 30% remaining corresponding to natural Pb.  相似文献   

2.
Diehl J  Johnson SE  Xia K  West A  Tomanek L 《Chemosphere》2012,87(5):490-497
One of the chemical breakdown products of nonylphenol ethoxylates, 4-nonylphenol (4-NP), accumulates in organisms and is of concern as an environmental pollutant due to its endocrine disrupting effects. We measured 4-NP levels in the seawater, sediment, and twelve organisms within the California estuary, Morro Bay, and examined biomagnification of 4-NP using stable isotope abundances (δ15N and δ13C) to quantify trophic position. 4-NP concentrations in organisms from Morro Bay included 25000 ± 8600 ng g−1 lw in liver of California sea lion, 14000 ± 5600 ng g−1 lw in liver of harbor porpoise, 138000 ± 55000 ng g−1 lw in liver of sea otters, 15700 ± 3600 ng g−1 lw in liver of seabirds, 36100 ± 6100 ng g−1 lw in arrow goby fish, 62800 ± 28400 ng g−1 lw in oysters, and 12700 ± 1300 ng g−1 lw in mussels. 4-NP levels generally showed a pattern of trophic dilution among organisms in Morro Bay, with exceptions of biomagnification observed between three trophic links: mussel to sea otter (BMF 10.9), oyster to sea otter (BMF 2.2), and arrow goby to staghorn sculpin (BMF 2.7). Our examination of other west coast estuaries of USA and Canada revealed that mean 4-NP concentrations in gobies and mussels from Morro Bay were significantly higher than those from a more urbanized estuary, San Francisco Bay (goby: 11100 ± 3800 ng g−1 lw) and from a remote estuary, Bamfield Inlet, Canada (goby: 9000 ± 900 ng g−1 lw, mussel: 6100 ± 700 ng g−1 lw). Relative to other estuaries worldwide, 4-NP levels in seawater (0.42 ± 0.16 μg L−1) and sediment (53 ± 14 ng g−1 dw) of Morro Bay are low, but gobies and oysters have higher 4-NP levels than comparable fauna.  相似文献   

3.
In this study, an analytical methodology was developed for the determination of psycho-active drugs in the treated effluent of the University Hospital at the Federal University of Santa Maria, RS – Brazil. Samples were collected from point A (Emergency) and point B (General effluent). The adopted methodology included a pre-concentration procedure involving the use of solid phase extraction and determination by liquid chromatography coupled to mass spectrometry. The limit of detection for bromazepam and lorazepam was 4.9 ± 1.0 ng L−1 and, for carbamazepine, clonazepam and diazepam was 6.1 ± 1.5 ng L−1. The limit of quantification was 30.0 ± 1.1 ng L−1, for bromazepam, clonazepam and lorazepam; for carbamazepine was 50.0 ± 1.8 ng L−1 and was 40.0 ± 1.0 ng L−1 for diazepam. The mean concentrations in the Emergency and General effluent treated currents were as follows: for bromazepam, 195 ± 6 ng L−1 and 137 ± 7 ng L−1; for carbamazepine, 590 ± 6 ng L−1 and 461 ± 10 ng L−1; for diazepam, 645 ± 1 ng L−1 and 571 ± 10 ng L−1; for lorazepam, 96 ± 7 ng L−1 and 42 ± 4 ng L−1; and for clonazepam, 134 ± 10 ng L−1 and 57 ± 10 ng L−1. A preliminary risk assessment was conducted: carbamazepine and diazepam require considerable attention owing to their environmental toxicity. The occurrence of these psychoactive-drugs and the environmental risks that they pose demonstrated the need for a more efficient treatment system. As far we are aware, there have been no comparable studies to this on the hazards of hospital effluents in Brazil, and very few that have carried out a risk assessment of psycho-active drugs in hospital effluent in general.  相似文献   

4.
The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in dissolved phase from Lake Chaohu were measured by (GC–MS). The composition and seasonal variation were investigated. The diffusive air–water exchange flux was estimated by a two-film model, and the uncertainty in the flux calculations and the sensitivity of the parameters were evaluated. The following results were obtained: (1) the average residual levels of all PAHs (PAH16) in the atmosphere from Lake Chaohu were 60.85 ± 46.17 ng m−3 in the gaseous phase and 14.32 ± 23.82 ng m−3 in the particulate phase. The dissolved PAH16 level was 173.46 ± 132.89 ng L−1. (2) The seasonal variation of average PAH16 contents ranged from 43.09 ± 33.20 ng m−3 (summer) to 137.47 ± 41.69 ng m−3 (winter) in gaseous phase, from 6.62 ± 2.72 ng m−3 (summer) to 56.13 ± 22.99 ng m−3 (winter) in particulate phase, and 142.68 ± 74.68 ng L−1 (winter) to 360.00 ± 176.60 ng L−1 (summer) in water samples. Obvious seasonal trends of PAH16 concentrations were found in the atmosphere and water. The values of PAH16 for both the atmosphere and the water were significantly correlated with temperature. (3) The monthly diffusive air–water exchange flux of total PAH16 ranged from −1.77 × 104 ng m−2 d−1 to 1.11 × 105 ng m−2 d−1, with an average value of 3.45 × 104 ng m−2 d−1. (4) The results of a Monte Carlo simulation showed that the monthly average PAH fluxes ranged from −3.4 × 103 ng m−2 d−1 to 1.6 × 104 ng m−2 d−1 throughout the year, and the uncertainties for individual PAHs were compared. (5) According to the sensitivity analysis, the concentrations of dissolved and gaseous phase PAHs were the two most important factors affecting the results of the flux calculations.  相似文献   

5.
This study presents carbon (δ13C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ13C of benzene ranged between (i) −21.7 ± 0.2‰, (ii) −27.6 ± 1.6‰ and (iii) −16.3 ± 2.2‰, respectively and δD of benzene ranged between (i) −73 ± 13‰, (ii) −111 ± 10‰ and (iii) −70 ± 24‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ13C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.  相似文献   

6.
Phosphine in paddy fields and the effects of environmental factors   总被引:1,自引:0,他引:1  
Ambient levels of phosphine (PH3) in the air, phosphine emission fluxes from paddy fields and rice plants, and the distribution of matrix-bound phosphine (MBP) in paddy soils were investigated throughout the growing stages of rice. The relationships between MBP and environmental factors were analyzed to identify the principal factors determining the distribution of MBP. The phosphine ambient levels ranged from 2.368 ± 0.6060 ng m−3 to 24.83 ± 6.529 ng m−3 and averaged 14.25 ± 4.547 ng m−3. The highest phosphine emission flux was 22.54 ± 3.897 ng (m2 h)−1, the lowest flux was 7.64 ± 4.83 ng (m2 h)−1, and the average flux was 14.17 ± 4.977 ng (m2 h)−1. Rice plants transport a significant portion of the phosphine emitted from the paddy fields. The highest contribution rate of rice plants to the phosphine emission fluxes reached 73.73% and the average contribution was 43.00%. The average MBP content of 111.6 ng kg−1fluctuated significantly in different stages of rice growth and initially increased then decreased with increasing depth. The peak MBP content in each growth stage occurred approximately 10 cm under the surface of paddy soils. Pearson correlation analyses and stepwise multiple regression analysis showed that soil temperature (Ts), acid phosphatase (ACP) and total phosphorus (TP) were the principal environmental factors, with correlative rankings of Ts > ACP > TP.  相似文献   

7.
Knowledge of the characteristics of Pb and its isotopic transfer in different compartments is scant, especially for the mobility of Pb isotopes in the geochemical cycle. The present study characterizes differential Pb transport mechanism and the mobility of Pb isotopes in the pedogenic parent rock–pedosphere–irrigated riverwater–cereal–atmosphere system in the Yangtze River delta region, by determining Pb concentration and Pb isotopic ratios of pedogenic parent rocks, fluvial suspended particle matter, tillage soils, soil profiles, irrigated riverwater, fertilizer, Pb ore, cereal roots and grains. The results show that Pb isotopes in the geochemical cycle generally follow the equation of 208Pb/206Pb = −1.157 × 206Pb/207Pb + 3.46 (r2 = 0.941). However, Pb isotopes have different mobility in different environmental matrixes. Whereas in the pedosphere, the heavier Pb (208Pb) usually shows stronger mobility relative to the lighter Pb, and is more likely to transfer into soil exchangeable Pb fraction and carbonates phase. The lighter Pb shows stronger transfer ability from soil to cereal grain via root compared to the heavier Pb. However, the cereal grains have lower 206Pb/207Pb and higher 208Pb/206Pb ratios than root and tillage soil, similar to the airborne Pb and anthropogenic Pb, implying that a considerable amount of Pb in cereal grains comes from the atmosphere. The estimate model shows that 16.7–52.6% (average: 33.5%) of Pb in rice grain is the airborne Pb.  相似文献   

8.
Yang G  Ma L  Xu D  Li J  He T  Liu L  Jia H  Zhang Y  Chen Y  Chai Z 《Chemosphere》2012,87(8):845-850
Arsenic levels and speciation in the total suspended particles (TSPs) were quantitatively determined by high performance liquid chromatography on-line coupled with hydride generation atomic fluorescence spectrometry in Beijing, China from February 2009 to March 2011. The high TSP levels fluctuated between 0.07 and 0.79 mg m−3, with a mean level of 0.32 ± 0.17 mg m−3. The total arsenic concentrations ranged from 0.03 to 0.31 μg m−3 (mean: 0.13 ± 0.06 μg m−3) in Beijing‘s air. The concentrations of As(III) and As(V) ranged from 0.73 to 20 ng m−3 (mean: 4.7 ± 3.6 ng m−3) and from 14 to 2.5 × 102 ng m−3 (mean: 67 ± 35 ng m−3), respectively. As levels and speciation demonstrated relative higher levels in spring and autumn and lower values in summer and winter. As(V) accounted for 81-99% of the extractable species in the TSP samples which showed that As(V) was the major fraction of the extractable As. Organoarsenic species, monomethylarsonate (MMA) and dimethylarsinate (DMA) were not found in all samples. Higher values of enrichment factors demonstrated that arsenic in TSP mainly come from anthropogenic sources. High As and its species levels in air and respiratory exposure (0.30-0.84 μg d−1) attributed to higher excess cancer risk ((4.2 ± 2.0) × 10−4) for people in Beijing.  相似文献   

9.
Guéguen F  Stille P  Millet M 《Chemosphere》2011,85(2):195-202
Tree barks were used as biomonitors to evaluate past atmospheric pollution within and around the industrial zones of Strasbourg (France) and Kehl (Germany) in the Rhine Valley. The here estimated residence time for trace metals, PCBs and PCDD/Fs in tree bark is >10 years. Thus, all pollution observed by tree bark biomonitoring can be older than 10 years. The PCB baseline concentration (sum of seven PCB indicators (Σ7PCBind)) determined on tree barks from a remote area in the Vosges mountains is 4 ng g−1 and corresponds to 0.36 × 10−3 ng toxic equivalent (TEQ) g−1 for the dioxin-like PCBs (DL-PCBs). The northern Rhine harbor suffered especially from steel plant, waste incinerator and thermal power plant emissions. The polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations analyzed in tree barks from this industrial area range between 392 and 1420 ng kg−1 dry-weight (dw) corresponding to 3.9 ng TEQPCDD/Fs kg−1 to 17.8 ng TEQPCDD/Fs kg−1, respectively. Highest PCDD/F values of 7.2 ng TEQ kg−1 to 17.8 ng TEQ kg−1 have been observed close to and at a distance of <2 km southwest of the chemical waste incinerator. However, very close to this incinerator lowest TEQ dioxin-like PCB (TEQDL-PCB) values of 0.006 ng TEQ g−1 have been found. On the other hand close to and southwest and northeast of the steel plant the values are comparatively higher and range between 0.011 ng TEQ g−1 and 0.026 ng TEQ g−1. However, even stronger Σ7PCBind enrichments have been observed at a few places in the city center of Kehl, where ΣDL-PCB values of up to 0.11 ng TEQ g−1 have been detected. These enrichments, however, are the result of ancient pollutions since recent long-term measurements at the same sites indicate that the atmospheric PCB concentrations are close to baseline. Emissions from an old landfill of waste and/or great fires might have been the reasons of these PCB enrichments. Other urban environments of the cities of Kehl and Strasbourg show significantly lower Σ7PCBind concentrations. They suffer especially from road and river traffic and have typically Σ7PCBind concentrations ranging from 11 ng g−1 to 29 ng g−1. The PCB concentration of 29 ng g−1 has been found in tree bark close to the railway station of Strasbourg. Nevertheless, the corresponding TEQDL-PCB are low and range between 0.2 × 10−3 ng TEQ g−1 and 7 × 10−3 ng TEQ g−1. Samples collected near road traffic are enriched in Fe, Sb, Sn and Pb. Cd enrichments were found close to almost all types of industries. Rural environments not far from industrial sites suffered from organic and inorganic pollution. In this case, TEQDL-PCB values may reach up to 58 × 10−3 ng TEQ g−1 and the corresponding V, Cr, Co, Ni, and Cd concentrations are comparatively high.  相似文献   

10.
Polybrominated diphenyl ethers (PBDEs), commonly used flame retardants, have been reported as potential endocrine disruptor and neurodevelopmental toxicants, thus giving rise to the public health concern. The goal of this study was to investigate the relationship between umbilical cord blood, maternal blood, and breast milk concentrations of PBDEs in South Korean. We assessed PBDE levels in paired samples of umbilical cord blood, maternal blood, and breast milk. The levels of seven PBDE congeners were measured in 21 paired samples collected from the Cheil Woman’s Hospital (Seoul, Korea) in 2008. We also measured thyroid hormones levels in maternal and cord blood to assess the association between PBDEs exposure and thyroid hormone levels. However, there was no correlation between serum thyroxin (T4) and total PBDEs concentrations. The total PBDEs concentrations in the umbilical cord blood, maternal blood, and breast milk were 10.7 ± 5.1 ng g−1 lipid, 7.7 ± 4.2 ng g−1 lipid, and 3.0 ± 1.8 ng g−1 lipid, respectively. The ranges of total PBDE concentrations observed were 2.28-30.94 ng g−1 lipid in umbilical cord blood, 1.8-17.66 ng g−1 lipid in maternal blood, and 1.08-8.66 ng g−1 lipid in breast milk. BDE-47 (45-73% of total PBDEs) was observed to be present dominantly in all samples, followed by BDE-153. A strong correlation was found for major BDE-congeners between breast milk and cord blood or maternal blood and cord blood samples. The measurement of PBDEs concentrations in maternal blood or breast milk may help to determine the concentration of PBDEs in infant.  相似文献   

11.
Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining.Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009.The A. nidus fronds that were attached to tree trunks 1-3 m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS.The highest atmospheric mercury concentration, 1.8 × 103 ± 1.6 × 103 ng m−3, was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ng m−3, was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 103 ± 1.6 × 103 ng g−1) than at the remote site (70 ± 30 ng g−1). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r = 0.895, P < 0.001, n = 14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (HgA.nidu/ng g−1) = 0.740 log (HgAir/ng m−3) − 1.324.  相似文献   

12.
Ratola N  Alves A  Santos L  Lacorte S 《Chemosphere》2011,85(2):247-252
Eight polybrominated diphenyl ethers (PBDEs) were determined in pine needles of three species (Pinus halepensis, Pinus pinea and Pinus nigra) collected in the NE Spain in an attempt to use this matrix for the biomonitoring of airborne PBDEs. The method used was based in ultrasonic extraction followed by alumina and Florisil clean-up and determination by gas chromatography coupled to mass spectrometry in negative chemical ionization. Recoveries were between 99% and 138%, limits of detection between 0.011 and 0.070 ng g−1-dw (0.232 ng g−1-dw for BDE 209) and repeatability lower than 13%. PBDE levels ranged between 0.027 ng g−1-dw and 13.04 ng g−1-dw, with predominance of BDE 209, followed by BDEs 47. P. halepensis was the species with the highest PBDE levels and P. nigra, the least, according to their widespread and remote distribution, respectively. The presence of PBDEs in pine needles was attributed to the release of in-use PBDEs, transport through atmosphere and adsorption upon lipid rich pine needles. Given the easy collection of pine needles, its ample distribution and its potential to accumulate airborne contaminants, this matrix is proposed as passive bio-sampler to be used in PBDE monitoring programs.

Capsule

Pine needles can be used to biomonitor airborne PBDEs.  相似文献   

13.
Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 ± 20 mg Pb kg−1) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO4, PbSO4·PbO, α-PbO and Pb0. Morphology investigations revealed that PM2.5 (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 μm or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl2 extraction.  相似文献   

14.
Buth JM  Ross MR  McNeill K  Arnold WA 《Chemosphere》2011,84(9):1238-1243
Triclosan, a common antimicrobial agent, may react during the disinfection of wastewater with free chlorine to form three chlorinated triclosan derivatives (CTDs). This is of concern because the CTDs may be photochemically transformed to tri- and tetra-chlorinated dibenzo-p-dioxins when discharged into natural waters. In this study, wastewater influent, secondary (pre-disinfection) effluent, and final (post-disinfection) effluent samples were collected on two occasions each from two activated sludge wastewater treatment plants, one using chlorine disinfection and one using UV disinfection. Concentrations of triclosan and three CTDs were determined using ultra performance liquid chromatography-triple quadrupole mass spectrometry with isotope dilution methodology. Triclosan and the CTDs were detected in every influent sample at levels ranging from 453 to 4530 and 2 to 98 ng L−1, respectively, though both were efficiently removed from the liquid phase during activated sludge treatment. Triclosan concentrations in the pre-disinfection effluent ranged from 36 to 212 ng L−1, while CTD concentrations were below the limit of quantification (1 ng L−1) for most samples. In the treatment plant that used chlorine disinfection, triclosan concentrations decreased while CTDs were formed during chlorination, as evidenced by CTD levels as high as 22 ng L−1 in the final effluent. No CTDs were detected in the final effluent of the treatment plant that used UV disinfection. The total CTD concentration in the final effluent of the chlorinating treatment plant reached nearly one third of the triclosan concentration, demonstrating that the chlorine disinfection step played a substantial role in the fate of triclosan in this system.  相似文献   

15.
Wang Z  Liu Z  Yang Y  Li T  Liu M 《Chemosphere》2012,89(3):221-227
Polycyclic aromatic hydrocarbons (PAHs) concentrations were determined in sediments and three types of wetland plants collected from the intertidal flats in the Chongming wetland. The concentration of total PAHs in sediments ranged from 38.7 to 136.2 ng g−1. Surface sediment concentrations were higher in regions with plant cover than in bare regions. Rhizome-layer sediments (56.8-102.4 ng g−1) contained less PAHs than surface sediments (0-5 cm). Concentrations of PAHs in plant tissues ranged from 51.9 to 181.2 ng g−1, with highest concentrations in the leaves of Scirpus. Most of the PAHs in the leaves and other plant tissues were low molecular weight compounds (LMW, 2-4 rings), and a similar distribution pattern of PAHs in different types of plants was also observed. Source analysis indicated that plants and sediments both came from pyrogenic sources, but plants had additional petroleum contamination. The low ratio of benzo[a]anthracene over chrysene suggests that the wetland PAHs came mainly from long-distance atmospheric transportation. Significant bioaccumulation of PAHs from the sediments into plants was not observed for high molecular weight PAHs (HMW, 5-6 rings) in Chongming wetland. The small RCFs (root concentration factor from sediments) for HMW PAHs and large RCFs for LMW PAHs suggested that roots accumulated LMW PAHs selectively from sediments in Chongming wetland.  相似文献   

16.
Fish oils are one of the main sources of ω-3 fatty acids. However, they can present elevated levels of some lipophilic pollutants, such as hexabromocyclododecanes (HBCDs). Since data about HBCDs in fish oil samples are very limited, in this study, 25 samples of fish oil for feed and food have been analyzed. Total HBCDs, as well as, α-, β- and γ-diastereoisomers have been determined. Total HBCDs ranged from 0.09 to 26.8 ng g−1, with higher concentrations in fish oil for feed (average value of 9.69 ng g−1) than those for food (1.14 ng g−1). Concentrations of α-HBCD (average value of 4.12 ng g−1 in feed samples and 0.48 ng g−1 in food samples) and γ-HBCD (5.05 and 0.43 ng g−1 respectively) were higher than that of β-HBCD (0.52 and 0.19 ng g−1 respectively) in most of the samples. However, none of them was predominant in the samples. Concentrations of HBCDs were compared to concentrations of other pollutants and correlation between dioxin and dioxin-like PCBs levels and HBCDs levels were observed. Intake of HBCDs was calculated for fish oil with human consumption purposes and it ranged from 0.08 to 5.38 ng HBCDs d−1, which could contribute significantly to HBCDs total intake. Enantiomeric fractions were also determined. No clear enrichment was observed for γ-HBCD, while (−)-α-HBCD enrichment was detected in some samples.  相似文献   

17.
The first attempt to systematically investigate the atmospheric mercury (Hg) in the MBL of the Augusta basin (SE Sicily, Italy) has been undertaken. In the past the basin was the receptor for Hg from an intense industrial activity which contaminated the bottom sediments of the Bay, making this area a potential source of pollution for the surrounding Mediterranean. Three oceanographic cruises have been thus performed in the basin during the winter and summer 2011/2012, where we estimated averaged Hgatm concentrations of about 1.5 ± 0.4 (range 0.9–3.1) and 2.1 ± 0.98 (range 1.1–3.1) ng m−3 for the two seasons, respectively. These data are somewhat higher than the background Hgatm value measured over the land (range 1.1 ± 0.3 ng m−3) at downtown Augusta, while are similar to those detected in other polluted regions elsewhere. Hg evasion fluxes estimated at the sea/air interface over the Bay range from 3.6 ± 0.3 (unpolluted site) to 72 ± 0.1 (polluted site of the basin) ng m−2 h−1. By extending these measurements to the entire area of the Augusta basin (∼23.5 km2), we calculated a total sea–air Hg evasion flux of about 9.7 ± 0.1 g d−1 (∼0.004 t yr−1), accounting for ∼0.0002% of the global Hg oceanic evasion (2000 t yr−1). The new proposed data set offers a unique and original study on the potential outflow of Hg from the sea–air interface at the basin, and it represents an important step for a better comprehension of the processes occurring in the marine biogeochemical cycle of this element.  相似文献   

18.
No scientific data is available on emerging contaminants including Polybrominated Diphenyl Ethers (PBDEs) and Dechloran Plus (DP) levels in the environment in Pakistan. Levels of PBDEs and DP were determined in the soil, sediment and atmospheric samples along the stretch of River Ravi in Punjab Province. Average concentrations of ΣPBDEs in atmosphere, soils and sediments were 36 pg m−3, 40 ng g−1 and 640 ng g−1. BDE-209 was the most abundant PBDE congener, showing that deca-BDE accounts for most of the total PBDE emitted in the environment of Pakistan. Total DP levels were calculated as 88 pg m−3, 0.8 ng g−1 and 1.9 ng g−1 in air, soil and sediment samples, respectively. The lower average fractions of anti-DP showed significant differences to those of the technical mixtures, indicating the lack of DP production source in Pakistan.  相似文献   

19.
Since the 1980s, the eel population has been decreasing dangerously. Persistent Organic Pollutants (POPs) such as Polychlorinated Biphenyls (PCBs) are one of the suspected causes of this decline. A preliminary study of PCB contamination carried out on different fish from the Gironde estuary (southwest of France, Europe) has shown a relatively high level of contamination of eel muscles. In order to characterize the contamination level of PCBs and PBDEs (PolyBrominated Diphenyl-Ethers) in eels from this estuary more than 240 eels were collected during the years 2004-2005 in the Gironde estuarine system, from glass eels to silver eels. Individual European eels were grouped according to length and localization sites. The results have shown a low contamination level of glass eels: respectively 28 ± 11 ng g−1 dw for PCBs and 5 ± 3 ng g−1 dw for PBDEs. The contamination level in eels (expressed in ng g−1 dw) increases from glass eels to silver eels up to 3399 ng g−1 dw of PCBs for the most contaminated silver eel. Such levels of PCBs similar to those observed in Northern Europe, could raise sanitary problems connected with the World Health Organization (WHO) recommendations. These results are worrying for the local people who regularly eat eels caught in the Gironde estuary.  相似文献   

20.
The rapid economic development in the Yangtze River Delta (YRD), China in the last three decades has had a significant impact on the environment of the East China Sea (ECS). Lead isotopic compositions of a 210Pb dated sediment core collected from the coastal ECS adjacent to the Yangtze River Estuary were analyzed to track the Pb pollution in the region. The baseline Pb concentration in the coastal ECS sediments before the industrialization in China was 32 μg g−1, and the corresponding 206Pb/207Pb ratio was 1.195. The high-resolution profiles of Pb flux and 206Pb/207Pb ratios had close relationships with the economic development and the history of the use of leaded gasoline in China, and they were clearly different from those of most European countries and United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号