首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The aims of this paper were to survey the total Hg levels and distribution character in intertidal sediment in continental coast of Shanghai, and identify the environment factors that might influence the sediment Hg concentrations, and to assess the pollution degree and potential ecological risk of Hg in sediment. Eighty-eight surface sediment samples and 18 sediment cores were collected for Hg contamination analysis. Physicochemical properties including Eh, particle size, content of total organic carbon (TOC), and acid volatile sulfide (AVS) were also measured. Index of geo-accumulation (I geo) and potential ecological risk index were used respectively to assess the pollution levels and the ecological risk of sediment Hg. The average of total Hg concentrations in surface sediments was 107.4?±?90.9 ng/g with the range from 0 to 465.9 ng/g. Higher Hg concentrations were generally found in surface sediments near sewage outfalls and the mouth of rivers. Total Hg concentrations were significantly correlated with TOC (p?<?0.05) both in surface (r?=?0.24) and core (r?=?0.29) sediments, but not with the other environment factors (Eh, AVS, and particle size). Geo-accumulation index indicated that Hg contamination in intertidal sediments was generally at none to moderate degree, while potential ecological risk index demonstrated that the risk caused by Hg were at moderate to considerable level. Intertidal sediment in continental coast of Shanghai has generally been contaminated by Hg, and it might pose moderate to considerable risk to the local ecosystem. The Hg contamination is related more to the coastal pollution sources and complicated hydrodynamic and sedimentary conditions than the other environment factors studied.  相似文献   

2.
Tire wear particles filed from the treads of end-of-life vehicle tires have been added to sea water to examine the release of Zn and the toxicity of the resulting leachate and dilutions thereof to the marine macroalga, Ulva lactuca. Zinc release appeared to be diffusion-controlled, with a conditional rate constant of 5.4 μg[L(h)1/2]−1, and about 1.6% of total Zn was released after 120 h incubation. Exposure to increasing concentrations of leachate resulted in a non-linear reduction in the efficiency of photochemical energy conversion of U. lactuca and, with the exception of the undiluted leachate, increasing accumulation of Zn. Phototoxicity was significantly lower on exposure to equivalent concentrations of Zn added as Zn(NO3)2, suggesting that organic components of leachate are largely responsible for the overall toxicity to the alga. Given the ubiquity and abundance of TWP in urban coastal sediments, the generation, biogeochemistry and toxicity of tire leachate in the marine setting merit further attention.  相似文献   

3.
Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C3-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax® beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for kslow and kvery slow. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions.  相似文献   

4.
One of the biggest environmental concerns caused by coal-fired power plants is the emission of mercury (Hg), which is toxic metal. To control the emission of Hg from coal-derived flue gas, it is important to understand the behavior and speciation of Hg as well as the interaction between Hg and solid materials in the flue gas stream. In this study, atomic-scale theoretical investigations using density functional theory (DFT) were carried out in conjunction with laboratory-scale experimental studies to investigate the adsorption behavior of Hg on hematite (α-Fe2O3). According to the DFT simulation, the adsorption energy calculation proposes that Hg physisorbs to the α-Fe2O3(0001) surface with an adsorption energy of ?0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens the Hg stability on the α-Fe2O3(0001) surface, as evidenced by a shortened Hg-surface equilibrium distance. The projected density of states (PDOS) analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing the adsorption strength. In summary, α-Fe2O3 has the ability to adsorb and oxidize Hg, and this reactivity is enhanced in the presence of Cl. For the laboratory-scale experiments, three types of α-Fe2O3 nanoparticles were prepared using the precursors Fe(NO3)3, Fe(ClO4)3, and FeCl3, respectively. The particle shapes varied from diamond to irregular stepped and subrounded, and particle size ranged from 20 to 500 nm depending on the precursor used. The nanoparticles had the highest surface area (84.5 m2/g) due to their highly stepped surface morphology. Packed-bed reactor Hg exposure experiments resulted in this nanoparticles adsorbing more than 300 μg Hg/g. The Hg LIII-edge extended X-ray absorption fine structure spectroscopy also indicated that HgCl2 physisorbed onto the α-Fe2O3 nanoparticles.

Implications: Atomic-scale theoretical simulations proposes that Hg physisorbs to the α-Fe2O3(0001) surface with an adsorption energy of ?0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens the Hg stability on the α-Fe2O3(0001) surface, as evidenced by a shortened Hg-surface equilibrium distance. The PDOS analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing the adsorption strength. Following laboratory-scale experiment of Hg sorption also shows that HgCl2 physisorbs onto α-Fe2O3 nanoparticles which have highly stepped structure.  相似文献   

5.
Mercury (Hg) mobility at the sediment–water interface was investigated during a laboratory incubation experiment conducted with highly contaminated sediments (13 μg g-1) of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia) mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed and can influence the Hg biogeochemical behavior, a redox oscillation was simulated in the laboratory, at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg (DHg) and methylmercury (MeHg), O2, NH4 +, NO3 - + NO2 -, PO4 3-, H2S, dissolved Mn2+, dissolved inorganic and organic carbon (DIC and DOC). Under anoxic conditions, both Hg (665 ng m2 day-1) and MeHg (550 ng m2 day-1) fluxed from sediments into the water column, whereas re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn-oxyhydroxides and enhanced demethylation processes. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of DHg species for the water column. On the contrary, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural “defence” from possible interaction between the metal and the aquatic organisms.  相似文献   

6.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

7.
Li F  Sun H  Hao Z  He N  Zhao L  Zhang T  Sun T 《Chemosphere》2011,84(2):265-271
In this study, nine perfluorinated compounds (PFCs) were investigated in water and sediment of Haihe River (HR) and Dagu Drainage Canal (DDC), Tianjin, China. The total PFCs in water samples from DDC (40-174 ng L−1) was much greater than those from HR (12-74 ng L−1). PFC contamination was severe at lower reaches of HR due to industry activities, while high PFCs were found in the middle of DDC due to the effluents from wastewater treatment plants. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were the predominant PFCs in aqueous phase. The total PFCs in sediments from DDC (1.6-7.7 ng g−1 dry weight) were lower as compared to HR (7.1-16 ng g−1), maybe due to the dredging of sediment in DDC conducted recently. PFOS was the major PFC in HR sediments followed by PFOA; while PFHxA was the major PFC in DDC sediments. Organic carbon calibrated sediment-water distribution coefficients (KOC) were calculated for HR. The Log KOC ranged from 3.3 to 4.4 for C7-C11 perfluorinated carboxylic acids, increasing by 0.1-0.6 log units with each additional CF2 moiety. The log KOC for 8:2 fluorotelomer unsaturated acid was reported for the first time with a mean value of 4.0. The log Koc of PFOS was higher than perfluoronanoic acid by 0.8 log units.  相似文献   

8.
Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg−1. Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as μ-XRF, μ-XRD and μ-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 μm. The main Hg-species found in the soil samples were metacinnabar (β-HgS), cinnabar (α-HgS), corderoite (Hg3S2Cl2), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 μm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution.  相似文献   

9.
The study of the effect of the sorption of linear alkylbenzene sulfonates (LAS) on the bioavailability to marine benthic organisms is essential to refine the environmental risk assessment of these compounds. According to the equilibrium partitioning theory (EqP), the effect concentration in water-only exposure will be similar to the effect concentration in the sediment pore water. In this work, sorption and desorption experiments with two marine sediments were carried out using the compound C12-2-LAS. The effect of the sediment sorption on the toxicity of benthic organisms was studied in water-only and in sediment bioassays with the marine mud shrimp Corophium volutator. In addition, three common spiking methods were tested for its application in the toxicity tests, as well as the stability of the surfactant during the water-only and sediment-water test duration. LC50 values obtained from water-only exposure showed a good correspondence with the pore water concentrations calculated from the sorption and desorption isotherms in the spiked sediments.  相似文献   

10.
As in vivo system, we propose Drosophila melanogaster as a useful model for study the genotoxic risks associated with nanoparticle exposure. In this study we have carried out a genotoxic evaluation of titanium dioxide (TiO2), zirconium oxide (ZrO2) and aluminium oxide (Al2O3) nanoparticles and their microparticulated forms in D. melanogaster by using the wing somatic mutation and recombination assay. This assay is based on the principle that loss of heterozygosis and the corresponding expression of the suitable recessive markers, multiple wing hairs and flare-3, can lead to the formation of mutant clones in treated larvae, which are expressed as mutant spots on the wings of adult flies. Third instar larvae were feed with TiO2, ZrO2 and Al2O3 nanoparticles, and their microparticulated forms, at concentrations ranging from 0.1 to 10 mM. Although a certain level of aggregation/agglomeration was observed in solution, it must be noted than the constant digging activity of larvae ensures that treated medium pass constantly through the digestive tract ensuring exposure. The results showed that no significant increases in the frequency of all spots (e.g. small single, large single, twin, total mwh and total spots) were observed, indicating that these nanoparticles were not able to induce genotoxic activity in the wing spot assay of D. melanogaster. Negative data were also obtained with the microparticulated forms. This indicates that the nanoparticulated form of the selected nanomaterials does not modify the potential genotoxicity of their microparticulated versions. These in vivo results contribute to increase the genotoxicity database on the TiO2, ZrO2 and Al2O3 nanoparticles.  相似文献   

11.

Background, aim and scope

The influence of pH (range 6.5–8.5) on the uptake of Zn, Cd, Pb, Cu, Ni, Cr, Hg, and As by juveniles of the clam Ruditapes philippinarum was examined in order to understand whether variation in sediment pH has significant repercussions on metal bioaccumulation.

Materials and methods

Clams were exposed to sediments collected in three locations in the Gulf of Cadiz (Huelva, Guadalquivir and Bay of Cadiz) and to contaminated particles derived from an accidental mining spill in Spain.

Results

With a notable exception of metal Cd, the concentration of metals within clams significantly increased (p?<?0.1) when sediment pH was lowered by one or two units. Moreover, the magnitude of this effect was dependent on the type of sediment contamination.

Discussion

Lower pH increases metal solubility and reduces or invert the metal sorption of metals to sediments. Increases in free metal ions in water favors metal uptake by clams, hence pH is an important factor controlling the mobility of these metals within sediments and their subsequent bioaccumulation within biota. Although sediment-water exchange of Cd can increase with acidification, this excess may be counterbalanced by the presence of ligands in seawater preventing the uptake by organism. Besides chlorines, Cd has also an affinity with carbonates and other ligands present in sea water. These Cd-carbonate complexes may reduce the bioavailable to organisms.

Conclusions

These results highlight the potential implications of sediment acidification, either due to the storage excess of organic matter or to the forced capture of CO2, on the increasing metal availability to benthic organisms.

Recommendations and perspectives

This kind of studies should be increased to address the influence of acidification in the behavior, bioavailability, toxicity, and risk assessment of contaminants associated with sediments either above sub-seabed geological formations in marine environments or in high enriched by organic matter in estuarine areas. Recently, the capture of CO2 in marine environments has been approved and started; it is necessary to address the potential impacts associated with leakages or other events occurring during the procedure of injection and storage of CO2.  相似文献   

12.
Lafabrie C  Major KM  Major CS  Cebrián J 《Chemosphere》2011,82(10):1393-1400
Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and “biological dilution” phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments.  相似文献   

13.
Two sediment matrices with different characteristics were amended with chars from different sources for bioaccumulation assay with filter-feeding Chironomus plumosus larvae. Chars greatly decreased porewater concentrations of PAHs (Ciw) measured using polyethylene devices in sediments. In organic rich sediment matrix-based systems where suspended char particles were absent, PAH concentrations in larvae (CiB) were significantly correlated with Ciw, and there was no difference in water-based bioaccumulation factors (BAFs) between different treatments, suggesting that water absorption was the main contaminant uptake route for larvae. In organic poor sediment matrix-based systems where suspended char particles were present, poor Pearson correlation between CiB and Ciw was found, but there was a significant linear increase of BAF values with char contents, which indicated that ingestion of suspended char particles could also be important for PAH bioaccumulation. Therefore, we need to rethink of the effectiveness and risks for the application of black carbon to sediment/soil remediation.  相似文献   

14.
This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extraction procedure specifically developed for appraising arsenic mobility in sediments. Toxicity assessment was performed on sediment elutriates, solid phases and aqueous arsenic species as single substance using the embryo-toxicity test on oyster larvae (Crassostrea gigas) and the Microtox test with Vibrio fischeri. Toxicity results showed that all sediment samples presented acute and sub-chronic toxic effects on oyster larvae and bacteria, respectively. The Microtox solid phase test allow to discriminate As-contaminated samples from the less contaminated ones, suggesting that toxicity of whole sediment samples is related to arsenic content. Toxicity of dissolved arsenic species as single substance showed that Vibrio fischeri and oyster larvae are most sensitive to As(V) than As(III). The distribution coefficient (Kd) of arsenic in sediment samples was estimated using results obtained in chemical sequential extractions. The Kd value is greater in SM (450 L kg?1) than in EST (55 L kg?1), indicating that arsenic availability is higher for the most toxic sediment sample (Estaque port). This study demonstrates that arsenic speciation play an important role on arsenic mobility and its bioavailability in marine port sediments.  相似文献   

15.
Degradation of three sulfonamides (SAs), namely sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadimethoxine (SDM) in surface water and sediments collected from Taihu Lake and Dianchi Lake, China was investigated in this study. The surface water (5–10 cm) was collected from the east region of Taihu Lake, China. Two sets of degradation experiments were conducted in 3-L glass bottles containing 2 L of fresh lake water and 100 μg/L of individual SAs aerated by bubbling air at a rate of approximately 1.2 L/min, one of which was sterilized by the addition of NaN3 (0.1 %). Sediment samples were taken from Taihu Lake and Dianchi Lake, China. For the sediment experiment, 5 g of sediment were weighed into a 50-mL glass tube, with 10 mg/kg of individual SAs. Different experimental conditions including the sediment types, sterilization, light exposure, and redox condition were also considered in the experiments. The three SAs degraded in lake water with half-lives (t 1/2) of 10.5–12.9 days, and the half-lives increased significantly to 31.9–49.8 days in the sterilized water. SMZ and SDM were degraded by abiotic processes in Taihu and Dianchi sediments, and the different experimental conditions and sediments characteristics had no significant effect on their declines. SMX, however, was mainly transformed by facultative anaerobes in Taihu and Dianchi sediments under anaerobic conditions, and the degradation rate of SMX in non-sterile sediment (t 1/2 of 9.6–16.7 days) were higher than in sterilized sediment (t 1/2 of 18.7–135.9 days). Under abiotic conditions, degradation of SMX in Dianchi sediment was faster than in Taihu sediment, probably due to the higher organic matter content and inorganic photosensitizers concentrations in Dianchi sediment. High initial SAs concentration inhibited the SAs degradation, which was likely related to the inhibition of microorganism activities by high SAs levels in sediments. Results from this study could provide information on the persistence of commonly used sulfanomides antibiotics in lake environment.  相似文献   

16.
Cutleaf coneflower (Rudbeckia laciniata L.) seedlings were placed into open-top chambers in May, 2004 and fumigated for 12 wks. Nine chambers were fumigated with either carbon-filtered air (CF), non-filtered air (NF) or twice-ambient (2×) ozone (O3). Ethylenediurea (EDU) was applied as a foliar spray weekly at 0 (control), 200, 400 or 600 ppm. Foliar injury occurred at ambient (30%) and elevated O3 (100%). Elevated O3 resulted in significant decreases in biomass and nutritive quality. Ethylenediurea reduced percent of leaves injured, but decreased root and total biomass. Foliar concentrations of cell-wall constituents were not affected by EDU alone; however, EDU × O3 interactions were observed for total cell-wall constituents and lignocellulose fraction. Our results demonstrated that O3 altered the physiology and productivity of cutleaf coneflower, and although reducing visible injury EDU may be phytotoxic at higher concentrations.  相似文献   

17.
Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 μg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.  相似文献   

18.
北运河表层沉积物对重金属Cu、Pb、Zn的吸附   总被引:3,自引:0,他引:3  
首先分析了北运河6个采样点表层沉积物中重金属含量及相关基本特征。通过实验室模拟实验,利用分配系数Kd评价沉积物对重金属Cu、Pb、Zn的吸附特性,进一步考察了水体pH变化和有机质对重金属在北运河沉积物上吸附的影响。结果表明,沉积物中重金属的含量顺序为Zn>Cu>Pb,去除有机质后,沉积物对重金属的吸附能力显著降低,但各采样点中的重金属含量,沉积物对重金属吸附能力,以及沉积物中的有机质含量并没有明显相关性,这可能是因为不同采样点中有机质种类与结构不同导致的。总之,北运河沉积物对Pb有很强的吸附能力,其次是Cu和Zn,而且,Cu、Zn、Pb的吸附量随着pH的升高逐渐增大,水体pH值对于Zn的吸附影响更大。  相似文献   

19.
The aqueous ozonolysis of α-pinene and β-pinene was conducted under simulated tropospheric conditions at different pHs and temperatures. Three kinds of products, peroxides, carbonyl compounds, and organic acids, were well characterized, and the detection of these products provides effective evidence for understanding the atmospheric aqueous reaction pathway. We have two interesting findings: (1) the unexpected formation of methacrolein (MACR), with a yield of ~40%, in the α-pinene–O3 aqueous reaction indicates a potentially new SOA formation pathway, because MACR is one of the important precursors of SOA; and (2) the surprisingly high yields of H2O2, ~60% for the α-pinene–O3 reaction and ~100% for the β-pinene–O3 reaction, indicates that H2O2 can be a significant contributor to the origin and transformation of oxidants in the atmosphere, especially in the humid regions. Moreover, we have determined the rate constant for aqueous reaction between MACR and H2O2 in pH 2 to 7 and obtained its upper limit as 0.13 M L?1 s?1. A mechanism concerning the formation of the species mentioned above is proposed, and it differs from that in the gas-phase reaction. We suggest that water plays a key role in the mechanism, by participating in the reactions as a direct reactant and by removing the excess energy of intermediates formed in the reactions.  相似文献   

20.
The main objective of this work concerns the coupling of biomass gasification reaction and CO2 sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO2 sorption to enhance tar removal and hydrogen production. It also proves the efficiency of CaO-Ca12Al14O33/olivine bi-functional materials to reduce heavy tar production. Experiments have been carried out in a fluidized bed gasifier using steam as the fluidizing medium to improve hydrogen production. Bed materials consisting of CaO-based oxide for CO2 sorption (CaO-Ca12Al14O33) deposited on olivine for tar reduction were synthesized, their structural and textural properties were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and temperature-programmed reduction (TPR) methods, and the determination of their sorption capacity and stability analyzed by thermogravimetric analysis (TGA). It appears that this CaO-Ca12Al14O33/olivine sorbent/catalyst presents a good CO2 sorption stability (for seven cycles of carbonation/decarbonation). Compared to olivine and Fe/olivine in a fixed bed reactor for steam reforming of toluene chosen as tar model compound, it shows a better hydrogen production rate and a lower CO2 selectivity due to its sorption on the CaO phase. In the biomass steam gasification, the use of CaO-Ca12Al14O33/olivine as bed material at 700 °C leads to a higher H2 production than olivine at 800 °C thanks to CO2 sorption. Similar tar concentration and lighter tar production (analyzed by HPLC/UV) are observed. At 700 °C, sorbent addition allows to halve tar content and to eliminate the heaviest tars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号