首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Contamination problems are often characterized by complex mixtures of chemicals. There are two conceptual models usually used to evaluate patterns of mixture toxicity: Concentration Addition (CA) and Independent Action (IA). Deviations from these models as synergism, antagonism and dose dependency also occur. In the present study, single and mixture toxicity of atrazine, dimethoate, lindane, zinc and cadmium were tested in Porcellionides pruinosus and Enchytraeus albidus, using avoidance as test parameter. For both species patterns of antagonism were found when exposed to dimethoate and atrazine, synergism for lindane and dimethoate exposures (with the exception of lower doses in the isopod case study) and concentration addition for cadmium and zinc occurred, while the exposure to cadmium and dimethoate showed dissimilar patterns.This study highlights the importance of dose dependencies when testing chemical mixtures and that avoidance tests can also be used to asses the effects of mixture toxicity.  相似文献   

2.
This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations > or = 0.27 micro g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 micro g/L; chlorothalonil 96 h EC50 = 64 micro g/L; atrazine 96 h EC50 = 69 micro g/L; 2,4-D 96 h EC50 = 45,000 micro g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

3.
Zhang J  Liu SS  Dou RN  Liu HL  Zhang J 《Chemosphere》2011,82(7):1024-1029
Ionic liquids (ILs) are a fascinating group of new chemicals with the potential to replace the classical volatile organic solvents, stimulating many applications in chemical industry. In case ILs are released to the environment, possible combined toxicity should be taken into account and it is, however, often neglected up to now. In this paper, therefore, the concentration-response curves (CRCs) of four groups of IL mixtures with various mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis and were compared to the CRCs predicted by an additive reference model, the concentration addition (CA) or independent action (IA), to identify the toxicity interaction. It is showed that most of the IL mixture rays displayed the classical addition while the remaining rays exhibited antagonism or synergism. Moreover, it is found that the pEC50 values of the mixture rays exhibiting antagonism or synergism are well correlated with the mixture ratio of a certain IL therein.  相似文献   

4.

This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations ≥ 0.27 μ g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 μ g/L; chlorothalonil 96 h EC50 = 64 μ g/L; atrazine 96 h EC50 = 69 μ g/L; 2,4-D 96 h EC50 = 45,000 μ g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

5.
This study analyzed the toxicity of three pesticides (the herbicide atrazine, the insecticide chlorpyrifos and the fungicide chlorothalonil) individually, and in two mixtures (atrazine and chlorpyrifos; atrazine and chlorothalonil) to the marine phytoplankton species Dunaliella tertiolecta (Chlorophyta). A standard 96 h static algal bioassay was used to determine pesticide effects on the population growth rate of D. tertiolecta. Mixture toxicity was assessed using the additive index approach. Atrazine and chlorothalonil concentrations > or = 25 microg/L and 33.3 microg/L, respectively, caused significant decreases in D. tertiolecta population growth rate. At much higher concentrations (> or = 400 microg/L) chlorpyrifos also elicited a significant effect on D. tertiolecta population growth rate, but toxicity would not be expected at typical environmental concentrations. The population growth rate EC50 values determined for D. tertiolecta were 64 microg/L for chlorothalonil, 69 microg/L for atrazine, and 769 microg/L for chlorpyrifos. Atrazine and chlorpyrifos in mixture displayed additive toxicity, whereas atrazine and chlorothalonil in mixture had a synergistic effect. The toxicity of atrazine and chlorothalonil combined was approximately 2 times greater than that of the individual chemicals. Therefore, decreases in phytoplankton populations resulting from pesticide exposure could occur at lower than expected concentrations in aquatic systems where atrazine and chlorothalonil are present in mixture. Detrimental effects on phytoplankton population growth rate could impact nutrient cycling rates and food availability to higher trophic levels. Characterizing the toxicity of chemical mixtures likely to be encountered in the environment may benefit the pesticide registration and regulation process.  相似文献   

6.
This study examined the effects of three widely used pesticides that have been previously detected in aquatic systems neighbouring agricultural fields on the early-life stages of the zebrafish Danio rerio. Tests involving single exposures and binary combinations of the s-triazine herbicides (atrazine and terbuthylazine) and the organophosphate insecticide chlorpyrifos were performed. Several endpoints, such as swimming behaviour, morphological abnormalities and mortality, were studied. In addition, the inhibition of acetylcholinesterase (AChE) activity was investigated in order to evaluate the mode of action and toxicity of chlorpyrifos in the presence of these herbicides. Results indicate that both binary mixtures elicited synergistic responses on the swimming behaviour of zebrafish larvae. Moreover, although the herbicides were not effective inhibitors of the AChE on their own, a synergistic inhibition of the enzyme activity was obtained by exposure to mixtures with chlorpyrifos. We observed a correlation between impairment of swimming behaviour of the larvae and inhibition of AChE activity. This study supports previous studies concerning the risk assessment of mixtures since the toxicity may be underestimated when looking only at the single toxicants and not their mixtures.  相似文献   

7.
The determination of the hormetic effects of a mixture is quite difficult because of the moderate simulation and the complexity of measurement in low doses. In the present study, two typical models for mixture toxicity prediction, concentration additive (CA) and independent action (IA), were used to predict the hormetic effects of mixtures. The predictive power of those models was validated by the hormetic effects (24-h exposure) of antibiotic’s binary mixtures to Vibrio fischeri. The results showed that CA and IA were unable to predict the hormetic dose-response of mixture, especially those of the interactive mixtures. As an alternative, a novel model, which was named as “six-point” and developed based on the quantitative features in the determined dose-response curve and on the Quantitative Structure Activity Relationships (QSARs) approach, was proposed for predicting the hormetic effects of mixtures in low dose. The results indicated that the “six-point” model can accurately predict the mixture hormetic effects in low dose, not only for non-interactive mixtures but also for interactive mixtures. Therefore, the “six-point” model is a powerful tool to predict the mixture hormetic effects at low dose, and may offer an important approach in the environment risk assessment of mixtures.  相似文献   

8.
Compound contamination and toxicity interaction necessitate the development of models that have an insight into the combined toxicity of chemicals. In this paper, a novel and simple model dependent only on the mixture information (MIM), was developed. Firstly, the concentration-response data of seven groups of binary and multi-component (pseudo-binary) mixtures with different mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis. Then, a desirable non-linear function was selected to fit the data. It was found that there are good linear correlations between the location parameter (α) and mixture ratio (p) of a component and between the steepness (β) and p. Based on the correlations, a mixture toxicity model independent of pure component toxicity profiles was built. The model can be used to accurately estimate the toxicities of the seven groups of mixtures, which greatly simplified the predictive procedure of the combined toxicity.  相似文献   

9.
化学物质对发光菌的联合毒性评价方法   总被引:1,自引:0,他引:1  
毒性单位法(TU)的理论基础来源于剂量加和模型(DA),目前仅在二元联合毒性评价中广泛应用。为了确定TU模型适合评价的混合物类型,实验选取5种剂量效应曲线类型不同的物质,采用微板光度计测试了一元、二元混合物对发光菌青海弧菌-Q67(Vibrio-qinghaiensis sp.-Q67)的急性毒性。根据物质的剂量效应曲线形状将物质分为A、B、C 3类,利用毒性单位法(TU)和联合作用定义法分别对AA类、AB类、AC类、BC类混合物进行分析。结果表明,TU法仅适合于由剂量效应曲线接近直线的物质组成的混合物进行联合毒性的评价。以效应为基准、TU模型为框架建立了TU’模型,该模型可以满足对任何类型已知成分的混合物或者未知成分的实际水样之间的多元联合作用的评价。  相似文献   

10.
Aquatic ecosystems are vulnerable to the exposure with petrochemicals such as toluene, ethylbenzene, and xylene (o-, m-, and p-xylene) (TEX) and their adverse effects. Considering the widespread use, occurrence, and high toxicity of TEX, the aim of this work was to investigate the differential toxicity of TEX against midge (Chironomus plumosus) larvae and reveal the joint action of binary and ternary mixtures of TEX using the predictive concentration addition model. More importantly, this research can afford the basic toxicity data and scientific reference for the establishment of water quality criteria or benchmark, water pollution control, and aquatic risk assessment. Single and joint toxic effects of TEX on C. plumosus larvae were investigated using a semi-static bioassay, and the type of joint effects of TEX was ascertained. In the single toxicant experiments, the toxicity of the three pollutants could be sequenced as ethylbenzene > xylene > toluene. Specifically, LC50s of T, E, and X after a 48-h exposure were 64.9, 37.8, and 42.0 mg/L, respectively. In the binary mixture experiments, the interaction between toluene and ethylbenzene, ethylbenzene and xylene, and toluene and xylene was largely in conformity with partial additive or additive effect as determined by isobologram representation and toxic unit models. In the ternary mixture experiments, the interaction was basically dependent on the use of additive index and mixture toxicity index methods. However, the antagonistic and synergistic actions were not significant. Thus, the tertiary mixture interaction could be regarded as additive action. The concentration addition model could successfully predict the joint action of TEX mixtures on C. plumosus larvae. Particularly, the additive action of TEX on C. plumosus larvae can be further recommended to evaluate water quality criteria of TEX.  相似文献   

11.
The toxicological interaction of perfluorooctane sulphonic acid (PFOS) with the chlorinated pollutants triclosan and 2,4,6-trichlorophenol and the lipid regulators gemfibrozil and bezafibrate was evaluated using the combination index-isobologram equation. The endpoint for bioassays was the growth rate inhibition of the green alga Pseudokirchneriella subcapitata. The results showed that most of the binary combinations assayed exhibited antagonism at all effect levels. The addition of a third component induced a less antagonistic or even synergistic behaviour. This was particularly marked for the ternary mixture of triclosan and 2,4,6-trichlorophenol with PFOS, for which synergism was very strong at all effect levels, with a combination index as low as 0.034 ± 0.002 at EC50 for the mixture. The results obtained indicate that the evaluation of mixture toxicity from single component data using the concentration addition approach could severely underestimate combined toxicity.  相似文献   

12.

Background, aim, and scope  

Glutaraldehyde (GA) often acts as an effective sterilant, disinfectant, and preservative in chemical products. It was found that GA had clearly acute toxicity to aquatic organisms. Furthermore, GA in natural environment could not exist as single species but as complex mixtures. To explore the toxicity interaction between GA and the other environmental pollutant, it is necessary to determine the mixture toxicities of various binary mixtures including GA. Two reference models, concentration addition (CA) and independent action (IA), are often employed to evaluate the mixture toxicity, which can be finished by comparing the concentration–response curves (CRCs) predicted by the reference models with the experimental CRC of the mixture. However, the CRC-based method cannot effectively denote the degree of the deviations from the reference models, especially at very low effect levels. Though the model deviation ratio (MDR) can be used to quantitatively evaluate the deviation of a mixture at EC50 level from the reference model, it is difficult to evaluate the deviations at the lower effect levels. Therefore, the primary aim of this study was to develop a new effect residual ratio (ERR) method to validate the deviations from the reference models at various effect levels.  相似文献   

13.
The objective of this study was to determine the acute toxicity of some pesticides used in irrigated rice farming to Lithobates catesbeianus tadpoles. The LC50-96h for commercial formulations containing bentazon, penoxsulam, vegetable oil, permethrin and carbofuran, separately and their mixtures, were determined at the proportions commonly used in the field. The limits of risk concentrations of these products for the studied species were also established. The LC50-96h for tadpoles was 4,530 mg L?1 for bentazon; 7.52 mg L?1 for penoxsulam + 145.66 mg L?1 of vegetable oil; 81.57 mg L?1 for vegetable oil; 0.10 mg L?1 for permethrin; 29.90 mg L?1 for carbofuran (active ingredients), and 38.79 times the dose used in the field for the mixture of these products. The environmental risk was determined only for permethrin, and care should be taken when using the vegetable oil.  相似文献   

14.
The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.  相似文献   

15.
This study investigated the effects of increased temperature and salinity, two potential impacts of global climate change, on the toxicity of two common pesticides to the estuarine grass shrimp, Palaemonetes pugio. Larval and adult grass shrimp were exposed to the fungicide chlorothalonil and the insecticide Scourge® under standard toxicity test conditions, a 10°C increase in temperature, a 10 ppt increase in salinity, and a combined increased temperature and salinity exposure. Toxicity of the fungicide chlorothalonil increased with temperature and salinity. Toxicity of the insecticide Scourge® also increased with temperature; while increased salinity reduced Scourge® toxicity, but only in adult shrimp. These findings suggest that changes in temperature and salinity may alter the toxicity of certain pesticides, and that the nature of the effect will depend on both the organism's life stage and the chemical contaminant. Standard toxicity bioassays may not be predictive of actual pesticide toxicity under variable environmental conditions, and testing under a wider range of exposure conditions could improve the accuracy of chemical risk assessments.  相似文献   

16.
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose–response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2n factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (10%, class-I) and moderately (10 < d  30%, class-II), highly (30 < d  50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.  相似文献   

17.
分别测定了苯酚、硝基苯和间硝基苯胺对发光菌的单一毒性,以及等浓度配比和等毒性配比的二元及三元混合体系的联合毒性,采用相加指数法对其联合效应进行了评价。结果表明,等浓度比和等毒性比混合体系的联合作用结果一致:苯酚+间硝基苯胺二元体系为协同作用,其他各体系为相加作用。为简化联合毒性实验方法,建议在研究相关系列化合物的联合毒性作用机制中,可采用等浓度配比方法。  相似文献   

18.
分别测定了苯酚、硝基苯和间硝基苯胺对发光菌的单一毒性,以及等浓度配比和等毒性配比的二元及三元混合体系的联合毒性,采用相加指数法对其联合效应进行了评价。结果表明,等浓度比和等毒性比混合体系的联合作用结果一致:苯酚+间硝基苯胺二元体系为协同作用,其他各体系为相加作用。为简化联合毒性实验方法,建议在研究相关系列化合物的联合毒性作用机制中,可采用等浓度配比方法。  相似文献   

19.
混合重金属对硝化颗粒污泥毒性作用的析因实验研究   总被引:3,自引:0,他引:3  
分别测定了Cu2 、Zn2 和Cd2 对硝化颗粒污泥的单一毒性,采用析因实验研究了二元和三元重金属混合体系对硝化颗粒污泥的联合毒性.结果表明,Cu2 、Zn2 和Cd2 的2 h半抑制浓度EC50分别为95.23、62.11和12.48 mg/L,由析因实验所得的响应曲面模型具有较好的优度(其R2>0.95),能够对混合体系的联合毒性很好地进行预测,析因实验可以用于环境领域混合体系联合毒性的研究.  相似文献   

20.
The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号