首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r 2?=?0.865, n?=?76, p?相似文献   

2.

Dissolved organic matter (DOM) is a critical component in aquatic ecosystems, yet its seasonal variability and reactivity remain not well constrained. These were investigated at the land-ocean interface of a subtropical river (Minjiang River, SE China), using absorption and fluorescence spectroscopy. The annual export flux of dissolved organic carbon (DOC) from the Minjiang River (5.48 × 1010 g year?1) was highest among the rivers adjacent to the Taiwan Strait, with 72% occurring in spring and summer. The freshwater absorption coefficient a280, DOC-specific UV absorbance SUVA254 and humification index HIX were higher, while the spectral slope S275–295 and biological index BIX were lower in summer than in winter. This suggests intensified export of terrestrial aromatic and high molecular weight constituents in the rainy summer season. Six fluorescent components were identified from 428 samples, including humic-like C1–C3, tryptophan-like C4 and C6, and tyrosine-like C5. The freshwater levels of four components (C1, C2, C4, and C6) were lower while that of C5 was higher in the wet season than in the dry season, suggesting contrasting seasonal variations of different constituents. Laboratory experiments were performed to assess the effects of photochemical and microbial degradation on DOM. Photo-degradation removed chromophoric and fluorescent DOM (CDOM and FDOM) effectively, which was stronger (i) for high molecular weight/humic constituents and (ii) during summer under higher solar radiation. Microbial degradation under laboratory controlled conditions generally showed little effect on DOC, and had smaller impact on CDOM and FDOM in winter than in summer. Overall, this study showed notable seasonal changes in the chemical composition and reactivity of DOM at the land-ocean interface, and demonstrated the significant effects of photo-degradation.

  相似文献   

3.
基于三维荧光光谱特征峰的水体有机污染物综合指标检测   总被引:1,自引:0,他引:1  
对来源不同一的32个水样进行三维荧光光谱的测定,并用5种典型有机物的荧光特征峰A(腐殖酸类)、C(腐殖酸类)、B(络氨酸类)、T1(色氨酸类)、T2(色氨酸类)进行了单一和组合式建模,发现对于来源不同一的水体的总有机含碳量(TOC)、化学耗氧量(COD)的检测采用这种提取特征峰建模的效果并不理想.该研究说明,依据典型特...  相似文献   

4.
Atmospheric phosphorus in the northern part of Lake Taihu, China   总被引:1,自引:0,他引:1  
Luo J  Wang X  Yang H  Yu JZ  Yang L  Qin B 《Chemosphere》2011,84(6):785-791
  相似文献   

5.
The production of triplet states (T(*)) of chromophoric dissolved organic matter (CDOM), reacting with the probe molecule 2,4,6-trimethylphenol (TMP) was measured upon irradiation of water samples, taken from lakes located in a mountain area (NW Italy) between 1450 and 2750 m above sea level. The lakes are located below or above the tree line and surrounded by different vegetation types (trees, alpine meadows or exposed rocks). The most photoactive samples belonged to lakes below the tree line and their fluorescence spectra and CDOM optical features suggested the presence of a relatively elevated amount of humic (allochthonous) material. The lowest (negligible) photoactivity was found for a lake surrounded by exposed rocks. Its CDOM showed an important autochthonous contribution (due to in-lake productivity) and considerably higher spectral slope compared to the other samples, suggesting low CDOM molecular weight and/or aromaticity. Among the samples, CDOM photoactivity (measured as the rate of TMP-reactive T(*) photoproduction) decreased with changing vegetation type in the order: trees, meadows, rocks. It could be connected with decreasing contribution from catchment runoff and increasing contribution from autochthonous processes and possibly precipitation.  相似文献   

6.
Fluorescent dissolved organic matter (FDOM) identified in coastal waters within a large salinity range had been widely reported in previous studies, which stated that conservative mixing of terrestrially derived and river-transported FDOM by clear seawaters could account for the relatively low FDOM fluorescence signals in high salinity seawaters. This study aimed at testing the conservative mixing model in high salinity seawaters in a shallow bay (Bohai Bay, China) with low river flow in a dry season. The water showed high salinities varying in a narrow range (30.52???2.07), and salinity effects on fluorescence quantum yields therefore less likely introduced complications to fluorescence data analyses. By applying a parallel factor analysis to fluorescence excitation emission matrices of the water samples, we identified a tyrosine-like FDOM component, a tryptophan-like FDOM component, and two humic substances-like FDOM components. Based on a theoretical analysis, we found that dissolved organic carbon concentrations and suspended solid concentrations of the bulk-water samples as well as the maximum fluorescence signals of each identified FDOM component showed spatial distributions that could not be accounted for by the conservative mixing model. Marine autochthonous processes including microbial activities and FDOM releasing from resuspended sediment were likely to be invoked.  相似文献   

7.
Eight commonly occurring polybrominated diphenyl ethers (PBDEs), including BDE 28, 47, 99, 100, 153, 154, 183, 207, and 209, were investigated in water samples from seven major inflowing rivers of Lake Chaohu to determine the distribution characteristics, potential sources and inputs to the lake. The sum of 8 BDE congeners (Σ8PBDEs) had a concentration varied from 0.31 to 84 ng L−1, with those of BDE 209, BDE 47, BDE 99, and BDE 153 being 0.31–83, <0.012–0.36, <0.012–1.3, and <0.012–0.77 ng L−1, respectively. These levels were in the high range of the global PBDEs concentrations in the water environments. The highest concentrations of Σ8PBDEs were detected in the western rivers, of which the main pollution sources were strongly related to human activities in urban centers, such as automobile-derived wastes. A sewage treatment plant was likely an important source of the lower brominated BDEs input to one western river. The correlation analyses (all < 0.05) between PBDEs and DOC, TN, TP, and EC, suggested that the distributions and sources of PBDEs in rivers might also be related with the soil erosion by heave floods. Σ8PBDEs input to Lake Chaohu from the rivers outlets was estimated at 344 kg yr−1 during the flood season. BDE 209 was the dominant contributor with an input of 340 kg yr−1, followed by BDE 99 (1.3 kg yr−1), BDE 47 (0.83 kg yr−1) and BDE 153 (0.60 kg yr−1).  相似文献   

8.
A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9 mg L−1) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ13C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ13C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ13C values of the DOC recovered in the reservoir (−28.5 ± 0.2‰; n = 22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ13C in algae = −30.1 ± 0.3‰; n = 2) being indistinguishable from the δ13C values of allochthonous DOC from inflowing rivers (−28.6 ± 0.1‰; n = 8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs.  相似文献   

9.
Maki T  Hirota W  Motojima H  Hasegawa H  Rahman MA 《Chemosphere》2011,83(11):1486-1492
Aquatic arsenic cycles mainly depend on microbial activities that change the arsenic chemical forms and influence human health and organism activities. The microbial aggregates degrading organic matter are significantly related to the turnover between inorganic arsenic and organoarsenic compounds. We investigated the effects of microbial aggregates on organoarsenic mineralization in Lake Kahokugata using lake water samples spiked with dimethylarsinic acid (DMA). The lake water samples converted 1 μmol L−1 of DMA to inorganic arsenic for 28 d only under anaerobic and dark conditions in the presence of microbial activities. During the DMA mineralization process, organic aggregates >5.0 μm with bacterial colonization increased the densities. When the organic aggregates >5.0 μm were eliminated from the lake water samples using filters, the degradation activities were reduced. DMA in the lake water would be mineralized by the microbial aggregates under anaerobic and dark conditions. Moreover, DMA amendment enhanced the degradation activities in the lake water samples, which mineralized 50 μmol L−1 of DMA. The DMA-amended aggregates >5.0 μm completely degraded 1 μmol L−1 of DMA with a shorter incubation time of 7 d. The supplement of KNO3 and NaHCO3 to lake water samples also shortened the DMA-degradation period. Presumably, the bacterial aggregates involved in the chemical heterotrophic process would contribute to the DMA-biodegradation process in Lake Kahokugata, which is induced by the DMA amendment.  相似文献   

10.
Yang L  Zhu L  Liu Z 《Chemosphere》2011,83(6):806-814
The concentrations of four perfluorinated sulfonate acids (PFSAs) and 10 perfluorinated carboxylate acids (PFCAs) were measured in water and sediment samples from Liao River and Taihu Lake, China. In the water samples from Taihu Lake, PFOA and PFOS were the most detected perfluorinated compounds (PFCs); in Liao River, PFHxS was the predominant PFC followed by PFOA, while PFOS was only detected in two of the samples. This suggests that different PFC products are used in the two regions. PFOS and PFOA in both watersheds are at similar level as in the rivers of Japan, but significantly lower than in Great Lakes. The contributions of PFOS and long chain PFCAs in sediments were much higher than in water samples of both watersheds, indicating preferential partition of these PFCs in sediment. The concentrations of PFOS and PFOA were three orders of magnitude of lower than that of polycyclic aromatic hydrocarbons in the same sediments. The average sediment-water partition coefficients (log Koc) of PFHxS, PFOS and PFOA were determined to be 2.16, 2.88 and 2.28 respectively.  相似文献   

11.
Phosphine migration at the water-air interface in Lake Taihu, China   总被引:1,自引:0,他引:1  
Han C  Geng J  Zhang J  Wang X  Gao S 《Chemosphere》2011,82(6):935-939
The diurnal atmospheric phosphine (PH3) concentrations and fluxes at the water-air interface in Lake Taihu were reported. The results showed that the PH3 flux at the water-air interface ranged from −69.9 ± 29.7 to 121 ± 42 ng m−2 h−1, with a mean flux of 14.4 ± 22.5 ng m−2 h−1. The fluxes were both negative and positive during the diurnal period, indicating that the lake can act as a sink and a source of PH3. In addition, the PH3 fluxes were positively correlated with water temperature, total soluble phosphorus and soluble reactive phosphorus, while they were negatively correlated with water redox potential. A similar diurnal variation curve of atmospheric PH3 concentrations was observed during all four seasons, with the maximum level occurring in early morning and the minimum appearing around midday. These findings suggest that light plays an important role in the elimination of atmospheric PH3. A significant positive correlation was also found between air temperature and atmospheric PH3 concentration. The mean flux of PH3 in Lake Taihu was higher than in other reported wetlands, with an estimated annual emission of PH3 to the atmosphere of 2.94 × 105 g y−1.  相似文献   

12.
The Tinto and Odiel rivers are heavily affected by acid mine drainage from mining areas in the Iberian Pyrite Belt. In this work we have conducted a study along these rivers where surface water samples have been collected. Field measurements, total dissolved metals and Fe and inorganic As speciation analysis were performed. The average total concentration of As in the Tinto river (1975 μg L−1) is larger than in the Odiel river (441 μg L−1); however, the mean concentration of As(III) is almost four times higher in the Odiel. In wet seasons the mean pH levels of both rivers (2.4 and 3.2 for the Tinto and Odiel, respectively) increase slightly and the amount of dissolved total arsenic tend to decrease, while the As(III)/(V) ratio strongly increase. Besides, the concentration of the reduced As species increase along the water course. As a result, As(III)/(V) ratio can be up to 100 times higher in the lower part of the basins. An estimation of the As(III) load transported by both rivers into the Atlantic Ocean has been performed, resulting in about 60 kg yr−1 and 2.7 t yr−1 by the Tinto and Odiel rivers, respectively.  相似文献   

13.
Sediment denitrification rate and its role in removal of dissolved nitrate load in lower Ishikari river system were examined. Denitrification rate were measured using acetylene inhibition technique on the sediment samples collected during August 2009–July 2010. The denitrification rate varied from 0.001 to 1.9 μg N g−1 DM h−1 with an average value of 0.21 μg N g−1 DM h−1 in lower Ishikari river system. Denitrification rate showed positive correlation with dissolved nitrate concentration in the river basin, indicating overlying water column supplied nitrate for the sediment denitrification processes. Nutrient enrichment experiments result showed that denitrification rate increased significantly with addition of nitrate in case of samples collected from Barato Lake however no such increase was observed in the samples collected from Ishikari river main channel and its major tributaries indicating that factors other than substrate concentration such as population of denitrifier and hydrological properties of stream channel including channel depth and flow velocity may affects the denitrification rate in lower Ishikari river system. Denitrification rate showed no significant increase with the addition of labile carbon (glucose), indicating that sediment samples had sufficient organic matter to sustain denitrification activity. The result of nutrient spiraling model indicates that in- stream denitrification process removes on an average 5% d−1 of dissolve nitrate load in Ishikari river. This study was carried out to fill the gap present in the availability of riverine denitrification rate measurement and its role in nitrogen budget from Japanese rivers characterize by small river length and high flow rate.  相似文献   

14.
Selected water quality parameters and spectroscopic characteristics of dissolved organic matter (DOM) were examined during two different seasons for an artificial coastal lake (Shiwha Lake in South Korea), which are affected by seawater exchange due to the operation of a tidal power plant and external organic loadings from the upstream catchments. The coastal lake exhibited much lower concentrations of organic matter and nutrients than the upstream sources. The spectroscopic properties of the lake DOM were easily distinguished from those of the catchment sources as revealed by a lower absorption coefficient, lower degree of humification, and higher spectral slopes. The observed DOM properties suggest that the lake DOM may be dominated by smaller molecular size and less condensed structures. For the lake and the upper streams, higher absorption coefficients and fluorescence peak intensities but lower spectral slopes and humification index were found for the premonsoon versus the monsoon season. However, such seasonal differences were less pronounced for the industrial channels in the upper catchments. Three distinctive fluorophore groups including microbial humic-like, tryptophan-like, and terrestrial humic-like fluorescence were decomposed from the fluorescence excitation-emission matrix (EEM) of the DOM samples by parallel factor analysis (PARAFAC) modeling. The microbial humic-like component was the most abundant for the industrial channels, suggesting that the component may be associated with anthropogenic organic pollution. The terrestrial humic-like component was predominant for the upper streams, and its relative abundance was higher for the rainy season. Our principal component analysis (PCA) results demonstrated that exchange of seawater and seasonally variable input of allochthonous DOM plays important roles in determining the characteristics of DOM in the lake.  相似文献   

15.
Relating dissolved organic matter fluorescence and functional properties   总被引:4,自引:0,他引:4  
Baker A  Tipping E  Thacker SA  Gondar D 《Chemosphere》2008,73(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

16.
Choi M  Furlong ET  Moon HB  Yu J  Choi HG 《Chemosphere》2011,85(8):1406-1413
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.  相似文献   

17.
Li W  Shi Y  Gao L  Liu J  Cai Y 《Chemosphere》2012,89(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L−1), while quinolones were prominent in sediments (65.5-1166 μg kg−1) and aquatic plants (8.37-6532 μg kg−1). Quinolones (17.8-167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

18.
The monitoring of pharmaceuticals and personal care products (PPCPs) has focused on the distribution in rivers and small lakes, but data regarding their occurrence and effects in large lake systems, such as the Great Lakes, are sparse. Wastewater treatment processes have not been optimized to remove influent PPCPs and are a major source of PPCPs in the environment. Furthermore, PPCPs are not currently regulated in wastewater effluent. In this experiment we evaluated the concentration, and corresponding risk, of PPCPs from a wastewater effluent source at varying distances in Lake Michigan. Fifty-four PPCPs and hormones were assessed on six different dates over a two-year period from surface water and sediment samples up to 3.2 km from a wastewater treatment plant and at two sites within a harbor. Thirty-two PPCPs were detected in Lake Michigan and 30 were detected in the sediment, with numerous PPCPs being detected up to 3.2 km away from the shoreline. The most frequently detected PPCPs in Lake Michigan were metformin, caffeine, sulfamethoxazole, and triclosan. To determine the ecological risk, the maximum measured environmental concentrations were compared to the predicted no-effect concentration and 14 PPCPs were found to be of medium or high ecological risk. The environmental risk of PPCPs in large lake systems, such as the Great Lakes, has been questioned due to high dilution; however, the concentrations found in this study, and their corresponding risk quotient, indicate a significant threat by PPCPs to the health of the Great Lakes, particularly near shore organisms.  相似文献   

19.
《Chemosphere》2009,74(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

20.
Research on the environmental fate and transport of PCBs in Lake Ontario basin depends, among other aspects, on the availability of representative data sets for upstream sources, but data are lacking for most US Lake Ontario tributaries. In this study, water samples were collected between September 2004 and October 2008 from five tributaries and were analyzed for 209 polychlorinated biphenyls (PCB) with high-resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) following EPA Method 1668A. Total PCB concentrations ranged between 0.31 and 42.75 ng L−1. Congeners between Di and Hexa PCBs accounted between 70 and 99% of the total PCB. The tributary with highest PCB concentrations presented similar pattern and percentage levels to Aroclor 1242. Total average loads for the sampling events ranged between 1.85 g d−1 and 59.08 g d−1. PCB concentrations were evaluated against other variables and other studies (including different matrices) to better understand their transport. The methodology used is reliable to assess PCB contamination in surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号