首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorus flows in Swedish agriculture and food chain were studied by material flow analysis. The system studied included agriculture, food consumption, related waste and wastewater from private households and municipal wastewater treatment plants. Swedish farmland had net annual phosphorus inputs of ~12 600 metric tons (4.1 kg P ha−1) in 2008–2010. The total import of phosphorus in food and feed to Sweden exceed imports of phosphorus in fertilizers. Despite strict animal density regulations relating to manure phosphorus content, phosphorus is accumulating on Swedish animal farms. The total quantity of manure produced greatly exceeds imported mineral phosphorus fertilizer and almost equals total phosphorus inputs to Swedish farmland.  相似文献   

2.
We examined the relationship between cotinine measures in follicular fluid (FF) and urine to inform our exposure assessment strategy for an ongoing epidemiological study of secondhand tobacco smoke (STS) exposure and early pregnancy loss. Among subjects undergoing in vitro fertilization (IVF), we compared cotinine levels in paired urine and FF samples from the same women and examined FF cotinine levels over time. We found a weak rank-order relationship (Spearman r < 0.2) and poor agreement for classifying nonsmoking individuals as exposed to STS (sensitivity = 0.29-0.71; specificity = 0.35-0.72) between cotinine concentrations in FF and urine. We observed fair reliability (ICC = 0.42-0.52) in FF cotinine concentrations from women undergoing multiple IVF cycles. If available, FF cotinine concentrations may be desired as a biomarker of low-level tobacco smoke exposure over urinary cotinine in studies of early reproduction. Collection of multiple FF samples for cotinine analysis may be needed to accurately represent long-term STS exposure.  相似文献   

3.
The average concentrations of ∑LABs (sum of C10-C13-LABs) in runoff samples collected from the eight major riverine outlets of the Pearl River Delta (PRD) of China ranged from 1.4 to 6124 ng/L in the dissolved phase and from 0.01 to 11.4 μg/g dry weight in the particulate phase during March 2005-February 2006. The annual riverine flux of ∑LABs from the PRD to the coastal ocean was estimated at approximately 14 tons/yr. The inventories of ∑LABs in agricultural lands of Guangdong Province ranged from 313 to 1825 kg/yr. The early and late rice fields were the major sink of LABs, accounting for approximately 68% of total LABs inventory in agricultural lands. The social-economically estimated annual discharge of LABs from household detergents in the PRD was ∼696 tons/yr, more than an order of magnitude higher than that estimated from field measurements (about 14 tons/yr), which was attributed to several factors.  相似文献   

4.
Mercury (Hg) mining is an important anthropogenic source of atmospheric Hg emissions. The Guizhou Province in Southwestern China is a region with extensive artisanal mercury mining (AMM), but little Hg emission data from this area is available. Using a mass balance method, we estimated emission factors from artisanal mercury mining in Wuchuan mercury mining area (WMMA) and Gouxi area (GX). Average emission factors were 18.2% in WMMA (ranging from 6.9% to 32.1%) and 9.8% in GX (ranging from 6.6% to 14.5%), respectively, which were 2.2–36.4 times higher than the literature values used to estimate Hg emission from Hg mining. Furthermore, the average Hg emission factor of AMM in WMMA was much higher than that in GX, indicating that double condensation processes practiced in GX resulted in higher recoveries and lower emission factors compared to single condensation process applied in WMMA. Atmospheric Hg emission was estimated to be 3.7–9.6 metric tons in 2004 for WMMA and 1.3–2.7 metric tons in 2006 for GX, indicating artisanal Hg mining was an important atmospheric Hg emission source in the study area.  相似文献   

5.
Di-n-pentyl phthalate (DPP) is used mainly as a plasticizer in nitrocellulose. At high doses, DPP acts as a potent testicular toxicant in rats. We administered a single oral dose of 500 mg kg−1 bw of DPP to adult female Sprague-Dawley rats (N = 9) and collected 24-h urine samples 1 d before and 24- and 48-h after DPP was administered to tentatively identify DPP metabolites that could be used as exposure biomarkers. At necropsy, 48 h after dosing, we also collected serum. The metabolites were extracted from urine or serum, resolved with high performance liquid chromatography, and detected by mass spectrometry. Two DPP metabolites, phthalic acid (PA) and mono(3-carboxypropyl) phthalate (MCPP), were identified by using authentic standards, whereas mono-n-pentyl phthalate (MPP), mono(4-oxopentyl) phthalate (MOPP), mono(4-hydroxypentyl) phthalate (MHPP), mono(4-carboxybutyl) phthalate (MCBP), mono(2-carboxyethyl) phthalate (MCEP), and mono-n-pentenyl phthalate (MPeP) were identified based on their full scan mass spectrometric fragmentation pattern. The ω − 1 oxidation product, MHPP, was the predominant urinary metabolite of DPP. The median urinary concentrations (μg mL−1) of the metabolites in the first 24 h urine collection after DPP administration were 993 (MHPP), 168 (MCBP), 0.2 (MCEP), 222 (MPP), 47 (MOPP), 26 (PA), 16 (MPeP), and 9 (MCPP); the concentrations of metabolites in the second 24 h urine collection after DPP administration were significantly lower than in the first collection. We identified some urinary metabolic products in the serum, but at much lower levels than in urine. Because of the similarities in metabolism of phthalates between rats and humans, based on our results and the fact that MHPP can only be formed from the metabolism of DPP, MHPP would be the most adequate DPP exposure biomarker for human exposure assessment. Nonetheless, based on the urinary levels of MHPP, our preliminary data suggest that human exposure to DPP in the United States is rather limited.  相似文献   

6.
In this study, 40 healthy women from Chongqing undergoing parturition were recruited and samples of venous blood, umbilical cord blood, breast milk and urine were collected for analysis of organic pollutants by GC/MS. A total of 292 different organic pollutants were detected, including 156 in venous blood, 139 in umbilical cord blood, 176 in breast milk and 138 in urine. Nine different PAEs were detectable in the samples: di-n-butyl phthalate (DBP), bis(2-methylpropyl) phthalate, butyl-8-methyl-nonyl phthalate, di-ethyl phthalate, butyl-2-methylpropyl phthalate, butyloctyl phthalate, di-dodecyl phthalate, di-isodecyl phthalate, and di-tridecyl phthalate. DBP was one of the chemicals detected at the highest frequency (48.82%). DBP concentrations were 84.75 ± 33.52, 52.23 ± 32.50, 57.78 ± 35.42 and 24.93 ± 18.67 μg/l in venous blood, umbilical cord blood, breast milk and urine, respectively. This study represents the first investigation of organic pollutants in a Chongqing population.  相似文献   

7.
In the scientific literature, little attention has been paid to the disposition of fipronil, a phenyl pyrazole insecticide. In this study, the tissue distribution, the metabolic fate, and the elimination of fipronil was investigated in rats using radiolabeled fipronil. When a single oral dose of 14C-fipronil (10 mg kg−1 b.w.) was given to rats, the proportion of dose eliminated in urine and feces 72 h after dosing was ca 4% for each route. At the end of the experiment the highest levels of radioactivity were found in adipose tissue and adrenals.  相似文献   

8.
SK Kim 《Chemosphere》2012,89(8):995-1002
Long-range transport of and exposure to perfluorinated substances (PFSs) strongly depend on their emission mode. In the present study, watershed-based riverine discharge loads and emission factors are estimated for perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorohexylsulfonate (PFHxS), and perfluorooctylsulfonate (PFOS) by using spatially distributed data of chemical concentrations together with water flows and a geographic information system (GIS). Average per capita emissions (emission factor, μg capita−1 d−1) are 75 for PFOA, 36 for PFNA, 17 for PFHxS, and 43 for PFOS, which are several times lower than the estimates for Japan and the European continent. A relatively uniform distribution is observed for PFHxS and PFOS emission factors, while elevated values of PFOA and PFNA predominate in one of eight river basins. This may indicate the leading contribution of diffusive sources (e.g. nonpoint source) for PFHxS and PFOS versus the presence of localized point sources for PFOA and PFNA. The lower-upper bound of total riverine loads discharged annually from the Korean peninsula are in the range of 0.53-1.3 tons for PFOA, 0.09-0.60 tons for PFNA, 0.07-0.29 tons for PFHxS, and 0.19-0.73 tons for PFOS, accounting for <1% of global annual emissions. Furthermore, these riverine discharge loads are significantly greater than the discharge loads from a wastewater treatment plant, indicating the necessity of further study of nonpoint sources.  相似文献   

9.
Lack of access to adequate sanitation facilities has serious health implications for rural dwellers and can degrade the ecosystems. This study offers a systemantic and quantitative overview of historical data on rural domestic waste (RDW) production and past and current management practices in a prototype region in China, where rural areas are undergoing rapid urbanization and are confronted with great environmental challenges associated with poor RDW management practices. The results indicate that RDW is characterized with a large fraction of kitchen waste (42.9%) and high water content (53.4%). The RDW generation (RDWG) per capita between 2012 and 2020 is estimated to increase from 0.68 to 1.01 kg/d-cap. The Hill 1 model is able to adequately simulate/project the population growth in a rural area from 1993 to 2020. The annual RDWG in the region is estimated to double from 6,033,000 tons/year in 2008 to 12,030,000 tons/year by 2020. By comparing three RDW management scenarios based on the life-cycle inventory approach and cost–benefit analysis, it is strongly recommended that the present Scenario 2 (sanitary landfill treatment) be upgraded to Scenario 3 (source separation followed by composting and landfill of RDW) to significantly reduce the ecological footprint and to improve the cost-effectiveness and long-term sustainability.

Implications:?Rural domestic waste (RDW) is affecting 720 million people in China and more than 3221 million people worldwide. Consequently, handling and disposal of RDW have serious health implications to rural dwellers and the ecosystems. This study offers a systemantic and quantitative overview and analysis of historical data on RDW production and management practices in a prototype region in China, which is confronted with great environmental challenges associated with RDW. Then we predict future production of RDW and propose a sustainable RDW management strategy, which holds the promise of greatly mitigating the mounting environmental pressure associated with RDW and provides science-based guidance for decision makers and practitioners for assuring rapid yet “green” economic development.  相似文献   

10.
Hwang SH  Park DU  Joo SI  Park HH  Yoon CS 《Chemosphere》2011,85(1):135-139
In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m−3, with an overall mean of 1.03 EU m−3. Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps < 0.05). Endotoxin levels were significantly correlated with humidity (r = 0.70, p < 0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories.  相似文献   

11.
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.  相似文献   

12.
We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0435-1) contains supplementary material, which is available to authorized users.  相似文献   

13.
The success of enhanced biological phosphorus removal (EBPR) depends on the constant availability of volatile fatty acids (VFAs). To reduce costs, waste streams would be a preferred source. Since VFAs were shown to vary in the incoming sewage and fermentate from primary sludge the next available source is waste activated sludge (WAS). The opportunity is particularly good in plants where WAS is stored before shipment. Little information is however available on the rate of VFA release from such sludge, especially at the lower temperatures and under the storage conditions typically found in colder climates. Bench-scale batch tests were performed to investigate the effect of temperature and requirement for mixing on VFA generation from WAS generated in full scale non-EBPR wastewater treatment plant. WAS fermentation was found highly temperature-dependent. Hydrolysis rate constant (kh) values of 0.17, 0.08 and 0.04 d−1 at 24.6, 14 and 4 °C were obtained, respectively. Arrhenius temperature coefficient was calculated to be 1.07. It took 5 d to complete hydrolysis at 24.6 °C, 7 d at 14 °C, and 9 d at 4 °C. The fermentation lasted for 20 d. At 24.6 °C the mixed reactor reached 84% of the overall VFA production only in 5 d. When temperature dropped to 14 and 4 °C, the ratio of VFA production at day 10 to overall VFA production in the mixed reactor were 62% and 48%, respectively. The overall VFA-COD concentration in the non-mixed reactors was much lower than the mixed reactors. The information is important for the designer as there was uncertainty with the effect of temperature and mixing on sludge fermentation.  相似文献   

14.
To study the effect of eating foods with a high arsenic (As) content on the intra and inter-individual variability of urinary concentrations of the As species, daily urine samples were collected for 10 consecutive days from 12 healthy male subjects. A daily food diary was kept throughout the study period. Personal exposure to airborne As was measured once during the study. As3, As5, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine were determined in all urine samples by inductive coupled plasma mass spectrometry, and the sum of As3 + As5 + MMA + DMA (iAs) by hydride generation-atomic absorption spectrophotometry. Exposure to airborne As was below the limit of detection in all samplings. As3 was found in only 19.2% and As5 in only 3.3% of the urine samples, whereas high urinary concentrations of arsenobetaine were observed. With the exception of arsenobetaine, expressed as a percentage, a significant inter-individual variability was observed for all species of As, for iAs and for the MMA/DMA ratio (p < 0.001). Instead, the intra-individual variability was significant only for the MMA/DMA ratio (p < 0.001). Among foods with a high As content, only a heavy consumption of seafood was shown to influence inter-individual variability of DMA%, arsenobetaine expressed as μg g−1 creatinine and iAs. In conclusion, even in populations with a high intake of organic As through foods, the finding of a significant inter-individual but no significant intra-individual variability of urinary species confirms the usefulness of urinary As speciation for biological monitoring of exposure to As.  相似文献   

15.

Background, aim and scope  

Australia is the largest producer of bauxite in the world, with an annual output of approximately 62 million metric dry tons in 2007. For every tonne of alumina, about 2 tonnes of highly alkaline and highly saline bauxite-processing residue are produced. In Western Australia, Alcoa World Alumina, Australia (Alcoa) produces approximately 15 MT of residue annually from its refineries (Kwinana, Pinjarra and Wagerup). The bauxite-processing residue sand (BRS) fraction represents the primary material for rehabilitating Alcoa’s residue disposal areas (RDAs). However, the inherently hostile characteristics (high alkalinity, high salinity and poor nutrient availability) of BRS pose severe limitations for establishing sustainable plant cover systems. Alcoa currently applies 2.7 t ha−1 of di-ammonium phosphate ((NH4)2HPO4; DAP)-based fertiliser as a part of rehabilitation of the outer residue sand embankments of its RDAs. Limited information on the behaviour of the dominant components of this inorganic fertiliser in highly alkaline BRS is currently available, despite the known effects of pH on ammonium (NH4) and phosphorus (P) behaviour. The aim of this study was to quantify the effects of pH on NH3 volatilisation and residual nitrogen (N) in BRS following DAP applications.  相似文献   

16.
Phthalate exposure in pregnant women and their children in central Taiwan   总被引:2,自引:0,他引:2  
Lin S  Ku HY  Su PH  Chen JW  Huang PC  Angerer J  Wang SL 《Chemosphere》2011,82(7):947-955
Phthalate exposure was found to be associated with endocrine disruption, respiratory effects, reproductive and developmental toxicity. The intensive use of plastics may be increasing the exposure to phthalates in Taiwanese population, particularly for young children.We studied phthalate metabolites in pregnant women and their newborns in a prospective cohort from a medical center in Central Taiwan. One hundred maternal urine samples and 30 paired cord blood and milk samples were randomly selected from all of participants (430 pregnant women). Eleven phthalate metabolites (MEHP, 5OH-MEHP, 2cx-MEHP, 5cx-MEPP, 5oxo-MEHP, MiBP, MnBP, MBzP, OH-MiNP, oxo-MiNP, and cx-MiNP) representing the exposure to five commonly used phthalates (DEHP, di-isobutyl phthalate (DiBP), DnBP, BBP, DiNP) were measured in urine of pregnant women, cord serum and breast milk after delivery, and in urine of their children. Exposure was estimated with excretion factors and correlation among metabolites of the same parent compound. Thirty and 59 urinary samples from 2 and 5 years-old children were randomly selected from 185 children successfully followed.Total urinary phthalate metabolite concentration (geometric mean, μg L−1) was found to be higher in 2-years-olds (398.6) and 5-years-olds (333.7) than pregnant women (205.2). Metabolites in urine are mainly from DEHP. The proportion of DiNP metabolites was higher in children urine (4.39 and 8.31%, ages 2 and 5) than in adults (0.83%) (p < 0.01). Compared to urinary levels, phthalate metabolite levels are low in cord blood (37.45) and milk (14.90). DEHP metabolite levels in women’s urine and their corresponding cord blood are significantly correlated. Compared to other populations in the world, DEHP derived metabolites in maternal urine were higher, while phthalate metabolite levels in milk and cord blood were similar. The level of phthalate metabolites in milk and cord blood were comparable to those found in other populations. Further studies of health effects related to DEHP and DiNP exposure are necessary for the children.  相似文献   

17.
Meng XZ  Duan YP  Yang C  Pan ZY  Wen ZH  Chen L 《Chemosphere》2011,82(5):725-731
Hexabromocyclododecanes (HBCDs) is a concern due to their large usage combining with physico-chemical properties and toxicity to wildlife and human. However, very limited data were reported on HBCDs in soils, especially from rural area. In this study, 22 soil samples were collected from Chongming Island at estuary of the Yangtze River Delta, to investigate the level, diasteroisomer profile, potential sources, and mass inventory of HBCDs. The total concentrations ranged from not detected to 93.8 pg g−1 dry weight (dw) with a mean of 23.3 pg g−1 dw, which was at the low end of the global levels. The wide distribution of HBCDs in soils suggested that the local emissions of HBCD-containing materials and/or the inputs via atmospheric transport from other regions were two possible sources. Variation of HBCDs levels was observed in different types of soils. Woodland, tideland and road soils contained slightly higher HBCDs than those of farmland and grassland. Overall, γ-HBCD was the dominant diasteroisomer in soils, followed by α-HBCD and β-HBCD. Significant but weak correlations were only found between α-HBCD and β-HBCD versus TOC content in soils. Currently, the mass inventory of HBCDs in soils of Chongming Island was 5.3 kg. Based on these data, we gave perspective on human intake of HBCDs via soil ingestion by age. Local resident’s intakes ranged from 15.5 to 97.8 fg kg body weight−1 d−1, in which children are exposed more than adults.  相似文献   

18.
Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from ∼2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases.  相似文献   

19.
Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH3. The current annual NH3 emission in developing countries of 15 million ton N accounts for of the global emission from animal excreta. In addition, 7.2 million tons NH3N of synthetic N fertilizers are lost as NH3 in developing countries. This is 80% of the global NH3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH3 emissions of only 60% from 15 to 24 million tons NH3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH3 volatilization, is realized. According to the scenario, the total emission of NH3 associated with food production in developing countries will increase from 22 to 30 million ton N yr−1 between 1990 and 2025. Although the NH3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.  相似文献   

20.
Mineral phosphorus (P) fertilizers processed from fossil reserves have enhanced food production over the past 50 years and, hence, the welfare of billions of people. Fertilizer P has, however, not only been used to lift the fertility level of formerly poor soils, but also allowed people to neglect the reuse of P that humans ingest in the form of food and excrete again as faeces and urine and also in other organic wastes. Consequently, P mainly moves in a linear direction from mines to distant locations for crop production, processing and consumption, where a large fraction eventually may become either agronomically inactive due to over-application, unsuitable for recycling due to fixation, contamination or dilution, and harmful as a polluting agent of surface water. This type of P use is not sustainable because fossil phosphate rock reserves are finite. Once the high quality phosphate rock reserves become depleted, too little P will be available for the soils of food-producing regions that still require P supplements to facilitate efficient utilization of resources other than P, including other nutrients. The paper shows that the amounts of P applied in agriculture could be considerably smaller by optimizing land use, improvement of fertilizer recommendations and application techniques, modified livestock diets, and adjustment of livestock densities to available land. Such a concerted set of measures is expected to reduce the use of P in agriculture whilst maintaining crop yields and minimizing the environmental impact of P losses. The paper also argues that compensation of the P exported from farms should eventually be fully based on P recovered from ‘wastes’, the recycling of which should be stimulated by policy measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号