首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qian Y  Posch T  Schmidt TC 《Chemosphere》2011,82(6):859-865
Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal’s forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.  相似文献   

2.
Sun K  Jin J  Gao B  Zhang Z  Wang Z  Pan Z  Xu D  Zhao Y 《Chemosphere》2012,88(5):577-583
The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (log Kd) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (Kd or KOC) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logKd for size fractions of SL and ST did not follow the order: clay > silt > sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes.  相似文献   

3.
Xiao D  Pan B  Wu M  Liu Y  Zhang D  Peng H 《Chemosphere》2012,86(2):183-189
The degradation intermediates of phenanthrene (PHE) may have increased health risks to organisms than PHE. Therefore, environmental fate and risk assessment studies should take into considerations of PHE degradation products. This study compared the sorption properties of PHE and its degradation intermediates, 9,10-phenanthrenequinone (PQN) and 9-phenanthrol (PTR) in soils, sediments and soil components. A relationship between organic carbon content (fOC) and single-point sorption coefficient (log Kd) was observed for all three chemicals in 10 soils/sediments. The large intercept in the log fOC − log Kd regression for PTR indicated that inorganic fractions control PTR sorption in soils/sediments. No relationship between specific surface area and Kd was observed. This result indicated that determination of surface area based on gas sorption could not identify surface properties for PHE, PQN, and PTR sorption and thus provide limit information on sorption mechanisms. The high sorption and strong nonlinearity (low n values) of PTR in comparison to PHE suggested that the mobility of PTR could be lower than PHE. Increased mobility of PQN compared with PHE may be expected in soils/sediments because of PQN lower sorption. The varied sorption properties of the three chemicals suggested that their environmental risks should be assessed differently.  相似文献   

4.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

5.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

6.
Soil organic matter (SOM) releasing with dissolved organic matter (DOM) formed in solution was confirmed in a sediment/water system, and the effects of SOM releasing on the sorption of phenanthrene on sediments were investigated. Inorganic salt (0–0.1 mol L?1 NaCl) was used to adjust SOM releasing, and two sediments were prepared, the raw sediment (S1) from Weihe River, Shann’xi, China, and the eluted sediments with and without DOM supernatant remained, termed as S2a and S2b, respectively. The FTIR and 1H NMR analysis indicate that the low molecular weight hydrophilic SOM fraction released prior to the high molecular weight hydrophobic fraction. As a response, phenanthrene sorption kinetics on S1 showed atypical and expressed as three stages: rapid sorption, pseudo sorption with partial desorption, and slow sorption, thus a defined “sorption valley” occurred in kinetic curve. In all cases, partition dominates the sorption, and sorption capacity (Kd) ranked as S2b > S1 > S2a. Compared with the alterations of sediment characters, DOM solubilization produced by SOM releasing exhibited a greater inhibitory effect on sorption with a relative contribution of 0.67. Distribution coefficients (Kdoc) of PHE into DOM clusters were 2.10?×?104–4.18?×?104 L kg?1, however a threshold concentration of 6.83 mg L?1 existed in DOM solubilization. The study results will help to clarify PAHs transport and their biological fate in a sediment/water system.  相似文献   

7.
By using dialysis equilibrium experiments, the sorption of a branched nonylphenol isomer [4-(1-ethyl-1,3-dimethylpentyl)-phenol] (NP111) on various humic acids (HAs) isolated from river sediments and two reference HAs was studied. The HAs were characterized by solid-state 13C direct polarization/magic angle spinning nuclear magnetic resonance (13C DP/MAS NMR) spectroscopy. Sorption isotherms of NP111 on HAs were described by a linear model. The organic carbon-normalized sorption coefficient (KOC) ranged from 2.3 × 103 to 1.5 × 104 L kg−1. Interestingly, a clear correlation between KOC value and alkyl C content was observed, indicating that the aliphaticity of HAs markedly dominates the sorption of NP111. These new mechanistic insights about the NP111 sorption indicate that the fate of nonylphenols in soil or sediment depends not only on the content of HA, but also on its structural composition.  相似文献   

8.
9.
Laboratory partitioning experiments were conducted to elucidate the sorption behaviour and partitioning of perfluoroalkyl compounds (PFCs). Three different sediment types were used and separately spiked with perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) at low environmentally realistic concentrations. PFOA, PFOS and PFOSA were mainly distributed in the dissolved phase at low suspended solid concentrations, indicating their long-range transport potential in the marine environment. In all cases, the equilibrium isotherms were linear and the organic carbon normalised partition coefficients (KOC) decreased in the following order: PFOSA (log KOC = 4.1 ± 0.35 cm3 g−1) > PFOS (3.7 ± 0.56 cm3 g−1) > PFOA (2.4 ± 0.12 cm3 g−1). The level of organic content had a significant influence on the partitioning. For the sediment with negligible organic content the density of the sediment became the most important factor influencing the partitioning. Ultimately, data on the partitioning of PFCs between aqueous media and suspended solids are essential for modelling their transport and environmental fate.  相似文献   

10.
Modifications of black carbons and their influence on pyrene sorption   总被引:2,自引:0,他引:2  
Zhang W  Wang L  Sun H 《Chemosphere》2011,85(8):1306-1311
Sorption of pyrene on black carbons (BCs) obtained by heating sawdust at two temperatures (400 and 700 °C, denoted as 400BC and 700BC, respectively), as well as on modified BCs (via oxidation, oximation, and hydrolysis) was studied to investigate the role of BC structural characteristics in sorption of hydrophobic organic compounds. Pyrene was bound strongly by 700BC and 400BC, with organic carbon normalized distribution coefficients (Koc) of 105.04-105.86 and 104.65-105.16, respectively, at equilibrium pyrene concentrations of 10-100 μg L−1. Both chemical composition and pore distribution of the two BCs changed after modifications, which led to changes in their sorption characteristics for pyrene. After modifications, the linearity of pyrene sorption isotherm increased for 700BC but decreased for 400BC. For 700BC, both oxidation and oximation reduced pyrene sorption, with Koc decreasing by 69.1-73.7% and 18.7-33.9%, respectively, whereas hydrolysis did not exert a significant influence. For 400BC, oxidation and hydrolysis reduced Koc by 2.28-25.9% and 29.2-33.9%, respectively, while oximation increased Koc. In most cases, the change in sorption capacity could be explained by the changes in C content and type, polarity, surface area, and micropore volume of the BCs; however, the role of conformation (the accessibility to sorption sites) could not be ignored.  相似文献   

11.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

12.
Simazine sorption to corn straw biochars prepared at various temperatures (100-600 °C) was examined to understand its sorption behavior as influenced by characteristics of biochars. Biochars were characterized via elemental analysis, BET-N2 surface area (SA), FTIR and 13C NMR. Freundlich and dual-mode models described sorption isotherms well. Positive correlation between log Koc values and aromatic C contents and negative correlation between log Koc values and (O + N)/C ratios indicate aromatic-rich biochars have high binding affinity to simazine (charge transfer (π-π*) interactions) and hydrophobic binding may overwhelm H-bonding, respectively. Dual-mode model results suggest adsorption contribution to total sorption increases with carbonization degree. Positive correlation between amounts of adsorption (Qad) and SA indicates pore-filling mechanism. Comparison between our results and those obtained with other sorbents indicates corn straw biochars produced at higher temperature can effectively retain simazine. These observations will be helpful for designing biochars as engineered sorbents to remove triazine herbicides.  相似文献   

13.
We investigated the respiratory uptake kinetics of polychlorinated biphenyls (PCBs), organohalogen pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE #47) in a marine benthic fish, Pseudopleuronectes yokohamae. The respiratory uptake efficiencies (EW) of the chemicals, of which there have been no reports for the majority of persistent organic pollutants (POPs), were obtained by measuring the respiratory uptake rate constants (k1) and the oxygen consumption rates of fish. Fish were exposed to water in which these chemicals were dissolved at environmentally relevant concentrations for 28 d, followed by 168 d of depuration in clean seawater. The k1 and EW values for 99 compounds were obtained, and they ranged from 2000 to 42 000 L kg-lipid−1 d−1 and from 0.060 to 1.3, respectively. The EW values of the chemicals, except for PAHs, tended to increase with increasing values of the log octanol–water partition coefficients (KOW) of the chemicals up to a log KOW of 5. For log KOW in the range 3–5, the EW values in this study were much lower than those in a published study (about one-third). As a result of analysis by a two-phase resistance model, the resistance of transport rates to the lipid phase in this study was lower than was the case in the published study. These findings indicate that the EW predicted by the published study for log KOW in the range 3–5 may differ among fish species and water temperature, and further study is needed.  相似文献   

14.
《Chemosphere》2009,74(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

15.
Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption–desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption–desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d?=?6.73–9.21) than other sulfonamides (K d?=?0.03–0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8–12 % is not so high to be considered significant. Low pH (<pK a of tested VPs) and rich soil organic matter (e.g., 0–20 cm soil sample) had a positive impact on sorption of VPs. Slightly lower distribution coefficients were obtained for VPs in wastewater treatment plant (WWTP) effluent, which suggested that dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6–98.0 %) in the leachate, while the recovery rate of TMP was only 4.2–10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20–80 cm and 0–20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions.  相似文献   

16.
Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by CTECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.  相似文献   

17.
Sulfonamides (SAs) are one of the oldest groups of veterinary chemotherapeutic agents. As these compounds are not completely metabolized in animals, a high proportion of the native form is excreted in feces and urine. They are therefore released either directly to the environment in aquacultures and by grazing animals, or indirectly during the application of manure or slurry. Once released into the environment, SAs become distributed among various environmental compartments and may be transported to surface or ground waters. The physicochemical properties of SAs, dosage and nature of the matrix are the factors mainly responsible for their distribution in the natural environment. Although these rather polar compounds have been in use for over half a century, knowledge of their fate and behavior in soil ecosystems is still limited. Therefore, in this work we have determined the sorption potential of sulfadimethoxine and sulfaguanidine on various natural soils. The influence on sorption of external factors, such as ionic strength and pH, were also determined. The sorption coefficients (Kd) obtained for the sulfonamides investigated were quite low (from 0.20 to 381.17 mL g−1 for sulfadimethoxine and from 0.39 to 35.09 mL g−1 for sulfaguanidine), which indicated that these substances are highly mobile and have the potential to run off into surface waters and/or infiltrate ground water. Moreover, the sorption of these pharmaceuticals was found to be influenced by OC, soil solution pH and ionic strength, with higher Kd values for soils of higher OC and lower Kd values with increasing pH and ionic strength.  相似文献   

18.
Antimony (Sb) distribution, solubility and mobility onto natural soils of China were studied in lysimeter and batch experiments as a function of physicochemical properties of the soil. An outdoor lysimeter experiment investigated the leaching and migration of Sb in the soils with Sb-polluted topsoil and unpolluted subsoil over a 5 month period. Soil solutions were collected by suction cups installed at different depth of lysimeters, and leachates were regularly collected and analyzed for Sb concentrations. The majority of the added Sb was retained in the topsoil layers, but small portions were moved to the sub-layers. Sb concentrations in the soil solutions and leachates ranged from 0–755.5 (6.38 ± 54 on average) μg l−1 and 0–0.45 (smaller than the detection limit) μg l−1 respectively, indicating the low solubility of Sb in the soils. Batch experiments were performed in order to determine the sorption capacity and the partition coefficient (Kd). Freundlich isotherm described properly the equilibrium experimental data and results show that the Kd values for Primosol, Isohumosol, Ferrosol equal to 22.5, 87.8, 704 L kg−1, respectively. These results showed the strong capacity of the soils to retain Sb, and prevent it being leached down the profile. The mobilizable Sb was in the order: Primosol > Isohumosol > Ferrosol. Sb migration in the soils was mainly associated with the exchangeable, carbonate-bound, and metal–organic complex-bound fractions. Health risk assessment indicates that Sb leaching from Ferrosol will not harm to human health through groundwater under the test conditions, while it has certain health risks from the Isohumosol and Primosol.  相似文献   

19.
20.
This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (fOC) ranging from 0.0035 to 0.082 gOC g−1. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号