首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

2.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

3.
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L−1, LC50 96 h for Chironomus xanthus of 2.67 μg L−1 and LC50 48 h for Danio rerio of 33 μg L−1.  相似文献   

4.
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.  相似文献   

5.
Molting in crustaceans is an important endocrine-controlled biological process that plays a critical role in growth and reproduction. Many factors can affect this physiological cycle in crustaceans including environmental stressors and disease agents. For example the pathology of Taura Syndrome Virus (TSV) of shrimp is closely related to molting cycle. Similarly, endosulfan, a commonly used pesticide is a potential endocrine disruptor. This study explores interrelationships between pesticide exposure, virus infection and their interactions with physiology and susceptibility of the shrimp. Litopenaeus vannamei (Pacific white shrimp) were challenged with increasing doses of endosulfan and TSV (TSV-C, a Belize reference strain) to determine the respective median lethal concentrations (LC50s). The 96-h endosulfan LC50 was 5.32 μg L−1, while the 7-d TSV LC50 was 54.74 mg L−1. Subsequently, based on their respective LC50 values, a 20-d interaction experiment with sublethal concentrations of endosulfan (2 μg L−1) and TSV (30 mg L−1) confirmed a significant interaction (p < 0.05, χ2 = 5.29), and thereby the susceptibility of the shrimp. Concurrently, molt-stage of animals, both at the time of exposure and death, was compared with mortality. For animals challenged with TSV, no strong correlation between molt-stage and mortality was observed (p > 0.05). For animals exposed to endosulfan, animals in the postmolt stage were shown to be more susceptible to acute toxicity (p < 0.05). For animals exposed to both TSV and endosulfan, interference of endosulfan-associated stress lead to increasingly higher susceptibility at postmolt (p < 0.05) during the acute phase of the TSV disease cycle.  相似文献   

6.
In this study, different concentrations of transfluthrin and metofluthrin have been assayed for genotoxicity by using the Wing Spot Test on Drosophila melanogaster. Standard cross was used in the experiment. Third-instar larvae that were trans-heterozygous for the two genetic markers mwh and flr3 were treated at different concentrations (0.0103 mg mL−1, 0.103 mg mL−1 for transfluthrin and 6 μg mL−1, 60 μg mL−1 for metofluthrin) of the test compounds. Feeding ended with pupation of the surviving larvae and the genetic changes induced in somatic cells of the wing’s imaginal discs lead to the formation of mutant clones on the wing blade. Results indicated that two experimental concentrations of transfluthrin and 60 μg mL−1 metofluthrin showed mutagenic and recombinogenic effects in both the marker-heterozygous (MH) flies and the balancer-heterozygous (BH) flies.  相似文献   

7.
8.
Chen H  Jiang JG 《Chemosphere》2011,84(5):664-670
Dunaliella salina, a unicellular green alga of environmental tolerance, was employed as test organism to investigate the toxicity effects of trichlorfon and dimehypo widely used in agriculture and veterinary as pesticides. The influences of trichlorfon and dimehypo on cell growth, β-carotene level, cell morphology changes, and activities of superoxide dismutase (Sod) and catalase (Cat) were investigated. At the concentrations less than 0.050 g L−1 trichlorfon or 0.0005 g L−1 dimehypo, cell responses were similar to control. When treated with 0.075-0.100 g L−1 trichlorfon or 0.001-0.004 g L−1 dimehypo, cell growth and β-carotene levels declined at first and then revived. When concentrations were higher than 0.125 g L−1 trichlorfon or 0.005 g L−1 dimehypo, both cell growth and β-carotene levels decreased until they were undetectable. The 10-d IC50 of trichlorfon and dimehypo on D. salina were 0.179 g L−1 and 0.032 g L−1. Both pollutants could stimulate the increase of Cat activity at a low concentration. Tolerance of D. salina to trichlorfon was obviously higher than that of dimehypo.  相似文献   

9.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

10.
The aim of this study was to determine and quantify effects of copper and lithium in tissues of early juveniles of the ramshorn snail, Marisa cornuarietis. For this purpose, hatchlings of M. cornuarietis were exposed for 7 days to a range of five different sublethal concentrations of copper (5, 10, 25, 50, and 75 μg Cu2+ L−1) and lithium (50, 100, 200, 1000, and 5000 μg Li+ L−1). Both metals changed the tissue structure of epidermis, hepatopancreas, and gills, varying between slight and strong reactions, depending on the copper and lithium concentration. The histopathological changes included alterations in epithelial and mucous cells of the epidermis, swelling of hepatopancreatic digestive cells, alterations in the number of basophilic cells, abnormal apices of digestive cells, irregularly shaped cilia and changes in the amount of mucus in the gills. The most sensible organ in M. cornuarietis indicating Cu or Li pollution is the hepatopancreas (LOECs were 10 μg Cu2+ L−1, or 200 μg Li+ L−1). In epidermis, mantle and gills relevant effects occurred with higher LOECs (50 μg Cu2+ L−1, or 1000 μg Li+ L−1). Base on LOECs, our results indicated that histopathological endpoints are high sensitivity to copper and lithium compared to endpoints for embryonic developmental toxicity.  相似文献   

11.
Glyphosate use has increased over the last decades for the control of invasive plant species in wetland ecosystems. Although glyphosate has been considered ‘environmentally’ safe, its repeated use could increase the toxicological risk derived from diffuse pollution of surface and groundwater on non-target vegetation. A glasshouse study was designed to determine the effect produced by the addition of different sub-lethal doses of glyphosate herbicides (5–30 mg L−1) to the nutrient solution on the growth and photosynthetic apparatus of Bolboschoenus maritimus. Although B. maritimus plants were able to grow and survive after 20 d of exposure to glyphosate, the presence of this herbicide affected their growth, through a direct interaction with the root system. Particularly, at 30 mg L−1 glyphosate, B. maritimus showed ca. 30% of biomass decrease. The reduction in B. maritimus growth was due to a decrease in net photosynthetic rate (A), which ranged between values ca. 11.5 and 5.5 μmol m−2 s−1 CO2 for the control and the highest glyphosate treatment, respectively. The response of A to glyphosate could be largely accounted for by non-stomatal limitations, since stomatal conductance was similar in all glyphosate treatments. Thus, A decrease was prompted by the negative impact of herbicide on photochemical (PSII) apparatus, the reduction in the absorption of essential nutrients, the reduction of photosynthetic pigments and possibly the reduction in Rubisco carboxilation capacity. Moreover, glyphosate excess caused photoinhibitory damage. In conclusion, in this study we have shown that herbicide water pollution could be a source of indirect phytotoxicity for B. maritimus.  相似文献   

12.
Hoffmann F  Kloas W 《Chemosphere》2012,87(11):1246-1253
Endocrine disrupting compounds (EDCs) are well known to interfere with the hormone system of aquatic vertebrates and to affect their reproductive biology. 17α-Methyldihydrotestosterone (MDHT) is a widely used model compound for the assessment of androgenic EDCs, because it binds with high affinity to nuclear androgen receptors. It was previously shown to affect various aspects of reproductive biology in aquatic vertebrates, however, evidence for MDHT affecting mating behavior of aquatic vertebrate species is lacking. In order to test the assumption that MDHT affects reproductive behavior of aquatic vertebrates, we exposed male and female Xenopuslaevis to three environmentally relevant concentrations of MDHT (30.45 ng L−1, 3.05 μg L−1 and 30.45 μg L−1). In males, MDHT at all concentrations led to enhanced levels of advertisement calling and decreased the relative proportions of rasping, a call type characterizing a sexually unaroused state of the male, indicating an increase in sexual arousal of MDHT exposed males. Temporal and spectral parameters of the advertisement call itself, however, were not affected by MDHT exposure. In females, MDHT (30.45 ng L−1) did not have any effects, while MDHT at 3.05 μg L−1 increased female receptivity, increased the duration of time females spent close to the speaker playing male advertisement calls and reduced their latency to respond. MDHT at 30.45 μg L−1, on the other hand, decreased female receptivity and increased their latency to respond. In summary, this study illustrates that exposure to environmentally relevant concentrations of the androgenic EDC MDHT affects male and female mating behavior of X. laevis. Hence, we suggest that nonaromatizable androgens might play a direct and predominant role in the physiology and regulation of reproduction not only in male but also in female frogs.  相似文献   

13.
Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment   总被引:3,自引:0,他引:3  
Chang BV  Yuan SY  Ren YL 《Chemosphere》2012,87(5):535-541
This study investigated the aerobic degradation of tetrabromobisphenol-A (TBBPA) and changes in the microbial community in river sediment from southern Taiwan. Aerobic degradation rate constants (k1) and half-lives (t1/2) for TBBPA (50 μg g−1) ranged from 0.053 to 0.077 d−1 and 9.0 to 13.1 d, respectively. The degradation of TBBPA (50 μg g−1) was enhanced by adding yeast extract (5 mg L−1), sodium chloride (10 ppt), cellulose (0.96 mg L−1), humic acid (0.5 g L−1), brij 30 (55 μM), brij 35 (91 μM), rhamnolipid (130 mg L−1), or surfactin (43 mg L−1), with rhamnolipid yielding a higher TBBPA degradation than the other additives. For different toxic chemicals in the sediment, the results showed the high-to-low order of degradation rates were bisphenol-A (BPA) (50 μg g−1) > nonylphenol (NP) (50 μg g−1) > 4,4′-dibrominated diphenyl ether (BDE-15) (50 μg g−1) > TBBPA (50 μg g−1) > 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) (50 μg g−1). The addition of various treatments changed the microbial community in river sediments. The results also showed that Bacillus pumilus and Rhodococcus ruber were the dominant bacteria in the process of TBBPA degradation in the river sediments.  相似文献   

14.
Yan S  Zhou Q 《Chemosphere》2011,85(6):1088-1094
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L−1, 1.15 mg L−1 and 2.36 mg L−1, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection.  相似文献   

15.
Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g−1 of dry cell was projected for 31.9 g L−1 sucrose and 1.3 g L−1 butyrate, and the maximum specific butanol production rate of 0.87 g d−1 g−1 of dry cell was predicted for 25.0 g L−1 sucrose and 2.6 g L−1 butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol−1 was projected for 25.0 g L−1 sucrose and 2.3 g L−1 butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol−1 when butyrate addition increased from 0 to 1 g L−1 under low sugar concentration (3.8 g L−1 sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone–butanol–ethanol fermentation.  相似文献   

16.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

17.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

18.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   

19.
The regulation of endogenous metabolites is still not fully understood in aquatic invertebrates exposed concurrently to toxicants and hypoxia. Despite the prevalence of hypoxia in the aquatic environment, toxicity estimations seldom account for multiple stressors thereby differing from natural conditions. In this study, we examined the influence of hypoxia (<30% O2) on contaminant uptake and the composition of intracellular metabolites in Lumbriculus variegatus exposed to benzo(a)pyrene (B(a)P, 3 μg L−1), chlorpyrifos (CPF, 100 μg L−1) or pentachlorophenol (PCP, 100 μg L−1). Tissue extracts of worms were analyzed for 123 metabolites by gas chromatography–mass spectrometry and metabolite levels were then related to treatments and exposure time. Hypoxia markedly increased the accumulation of B(a)P and CPF, which underlines the significance of oxygen in chemical uptake. The oxygen effect on PCP uptake was less pronounced. Succinate and glycerol-3-phosphate increased significantly (p < 0.0001) following hypoxic treatment, whereas sugars, cysteine, and cholesterol were effectively repressed. The buildup of succinate coupled with the corresponding decline in intracellular 2-oxo- and 2-hydroxy glutaric acid is indicative of an active hypoxia inducible factor mechanism. Glutamate, and TCA cycle intermediates (fumarate, and malate) were disturbed and evident in their marked suppression in worms exposed concurrently to hypoxia and PCP. Clearly, hypoxia was the dominant stressor for individuals exposed to B(a)P or CPF, but to a lesser extent upon PCP treatment. And since oxygen deprivation promotes the accumulation of different toxicants, there may be consequences on species composition of metabolites in natural conditions.  相似文献   

20.
Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna,Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L−1 concentration range. For the acute endpoints (IC50 and EC50) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L−1 (diclofenac 47-67 mg L−1), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L−1 (gemfibrozil 32-100 mg L−1). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L−1 corresponding to nominal concentrations of 1 and 1000 μg L−1. Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L−1 the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号