首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Yang L  Li Z  Zou L  Gao H 《Chemosphere》2011,83(3):233-239
Phenolic compounds are partly known as endocrine disruptors with various harmful effects including feminization and carcinogenesis at very low concentrations. Consequently, the pathways and removal of these compounds in natural and artificial sewage treatment systems such as wetlands have received wide concern. In this paper, a natural reed bed wetland with an area of 695 ha located in the Liaohe River estuary in Northeast China was employed as a demonstration site to study the retention and removal efficiency of phenolic compounds including 4-nonylphenol (4-NP), bisphenol A (BPA), 4-t-octylphenol (4-t-OP), and 2,4-dichlorophenol (DCP), and to evaluate their purification capacity via water and mass balance analyses during an irrigation period from May 9 to September 8, 2009. The results showed that the phenolic compounds could be retained in the wetland system and removed through various processes. On average, 27.5% of phenolic compounds could be retained by the wetland substrate during the initial three-day irrigation period with a retention capacity order of 4-t-OP > 4-NP > BPA > DCP. During the following 120 d irrigation period, the phenolic compounds could be efficiently removed with an average percentage of 91.6%. It is estimated that 1.76 kg d−1 of phenolic compounds could be removed by the Liaohe River estuarine wetland (∼8 × 104 ha). The reed bed wetland system therefore provides a feasible mitigation option for phenolic pollutants in sewage and wastewater.  相似文献   

2.
Diehl J  Johnson SE  Xia K  West A  Tomanek L 《Chemosphere》2012,87(5):490-497
One of the chemical breakdown products of nonylphenol ethoxylates, 4-nonylphenol (4-NP), accumulates in organisms and is of concern as an environmental pollutant due to its endocrine disrupting effects. We measured 4-NP levels in the seawater, sediment, and twelve organisms within the California estuary, Morro Bay, and examined biomagnification of 4-NP using stable isotope abundances (δ15N and δ13C) to quantify trophic position. 4-NP concentrations in organisms from Morro Bay included 25000 ± 8600 ng g−1 lw in liver of California sea lion, 14000 ± 5600 ng g−1 lw in liver of harbor porpoise, 138000 ± 55000 ng g−1 lw in liver of sea otters, 15700 ± 3600 ng g−1 lw in liver of seabirds, 36100 ± 6100 ng g−1 lw in arrow goby fish, 62800 ± 28400 ng g−1 lw in oysters, and 12700 ± 1300 ng g−1 lw in mussels. 4-NP levels generally showed a pattern of trophic dilution among organisms in Morro Bay, with exceptions of biomagnification observed between three trophic links: mussel to sea otter (BMF 10.9), oyster to sea otter (BMF 2.2), and arrow goby to staghorn sculpin (BMF 2.7). Our examination of other west coast estuaries of USA and Canada revealed that mean 4-NP concentrations in gobies and mussels from Morro Bay were significantly higher than those from a more urbanized estuary, San Francisco Bay (goby: 11100 ± 3800 ng g−1 lw) and from a remote estuary, Bamfield Inlet, Canada (goby: 9000 ± 900 ng g−1 lw, mussel: 6100 ± 700 ng g−1 lw). Relative to other estuaries worldwide, 4-NP levels in seawater (0.42 ± 0.16 μg L−1) and sediment (53 ± 14 ng g−1 dw) of Morro Bay are low, but gobies and oysters have higher 4-NP levels than comparable fauna.  相似文献   

3.
4.
Zhou Q  Diao C  Sun Y  Zhou J 《Chemosphere》2012,86(10):994-1000
The growth, photosynthesis rate, and ultrastructure of Mirabilis jalapa L. as a newly-found remediation species under stress of nitrobenzene (NB) and its uptake and removal of NB by the plants were investigated. The results showed that M. jalapa plants could endure contaminated soils by lower than 10.0 mg NB kg−1 because there was no decrease in the total length of the plant roots, the maximum length of the hypocotyle, the length of the first seminal root, the height of the shoots and the dry biomass of the seedlings as well as the photosynthesis rate of the plants compared with those in the control. In particular, the growth of the plants could be significantly (< 0.01) enhanced by 0.1 mg NB kg−1 under unautoclaved and autoclaved soils. Ultrastructural observations on leaf cells of the plants found that these cells had smooth, clean and continuous cell membranes and cell walls, indicating that there was no obvious damage by NB in comparison with those in the control. Although the absorption of NB in shoots and roots of M. jalapa was weak, plant-promoted biodegradation of NB was considerable and the dominant contribution in the removal of NB from contaminated soils, suggesting the feasibility of M. jalapa applied to phytoremediation of NB contaminated soils.  相似文献   

5.
Rubio MA  Lissi E  Herrera N  Pérez V  Fuentes N 《Chemosphere》2012,86(10):1035-1039
Phenol, nitrophenols and dinitrophenols were measured in air and dews in downtown Santiago de Chile. In both systems, phenol, 2-nitrophenol (2-NP), and 4-nitrophenol (4-NP) were the compounds found in higher concentrations and with major frequency. Temporal profiles in air were compatible with a significant direct incorporation from mobile sources. The data can be explained in terms of a faster removal of 2-NP than 4-NP, with the former predominating in fresh air masses and 4-NP in more aged samples. All these compounds, as well as dinitrophenols, were found in dew waters. Simultaneous measurements in air and dew indicate that phenol present in dew exceeds that expected in equilibrated samples, while the opposite occurs with 4-NP. This last result is associated to mass transfer limitations for the highly water soluble nitroderivative.  相似文献   

6.
7.
From 1995 to 1998 the concentrations of 4-nitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, dinitro-ortho-cresol (DNOC) and 2,4-di-nitrophenol were measured monthly by HPLC in precipitation at eight different locations in Bavaria (Germany). Samples were collected by purpose-constructed computerised rainwater samplers which record electronically various sensor data each hour and adjust the sample temperature to 4 degrees C. The highest nitrophenol (NP) concentrations were measured for 4-NP. The median at all locations is higher than 1 microg/l. The median of the other NPs ranges between 0.2 and 0.8 microg/l. Considering the rain amounts the highest depositions were calculated for the regions Spessart, Bayerischer Wald and Chiemgauer Alpen. The median of 4-NP depositions extents to 200 microg/(month m2). The highest medians of the other NP depositions reach approximately 50 microg/(month m2).  相似文献   

8.
Adsorption of phenols by papermill sludges   总被引:8,自引:0,他引:8  
In this paper we studied the sorption capacity of paper mill sludges for phenols. Phenol, 2-chlorophenol (2-CP), 3-chlorophenol 3-CP). 4-chlorophenol (4-CP), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2.4-dichlorophenol (2,4-DCP), 3,4-dichlorophenol (3,4-DCP) 3,5-dichlorophenol (3,5-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) were chosen for the sorption tests. Kinetic experiments showed that substituted-phenol sorption on papermill sludge was rapid (equilibrium was reached after 3 h); conversely, the time taken by the phenol to reach equilibrium conditions was 260 h. Experimental data showed that particle diffusion was involved in the sorption process but was not the only rate-limiting mechanism; several other mechanisms were involved. The adsorption isotherms showed the following order of retention capacity of papermill sludge: 2-NP = 4-NP < < 2-CP < phenol < 4-CP < or = 3-CP < 2,4 DCP<3,4 DCP=2,4,5 TCP<3,5 DCP. In all cases the experimental data showed a good fit with the Hill equation. which is mathemratically equivalent to the Langmuir-Freundlich model obtained by assuming that the surface is homogeneous, and that the adsorption is a cooperative process influenced by adsorbate-adsorbate interactions.  相似文献   

9.

Background

Polychlorinated biphenyls (PCBs) and organochlorine pesticides are common environmental contaminants that have been associated with human health problems.

Objectives

To assess serum concentrations of several organochlorine contaminants in general population living in a city with an ancient agricultural tradition and to identify possible exposure sources in Sicily.

Methods

A cross-sectional study was conducted on 101 individuals. Each participant answered a face-to-face questionnaire submitted by well-trained personnel and provided a serum sample which was analyzed for the concentrations of PCBs, HCB, HCHs and DDTs by using gas-chromatography coupled with mass spectrometry.

Results

HCB, p,p′-DDE, PCB 138, PCB 153 and PCB 180 were detected in more than 80% of the study participants. The ng g−1 lipid median concentrations were: 18.6 for HCB; 175.1 for p,p′-DDE; 22. for PCB 138; 32.5 for PCB 153 and 23.0 for PCB 180. PCB 153 and PCB 138, PCB 138 and PCB 180, PCB 153 and PCB 180, and p,p′-DDE and HCB showed a high correlation each other (p < 0.05). HCB and p,p′-DDE concentrations were significantly higher in subjects >49 years old (adj-p = 0.03 in 50-69 years old and adj-p < 0.001 in >69 years old, respectively) whereas PCB 138, PCB 153 and PCB 180 concentrations were higher in males (adj-p = 0.03), in subjects >69 years old (adj-p = 0.04) and in current smokers (adj-p = 0.04).

Conclusions

The present study shows that serum concentrations of organochlorine compounds detected in subjects living in a small Sicilian city with ancient agricultural tradition are similar to those found in subjects living in urban areas of other countries. However, further investigations are needed to compare data from rural/urban areas in the same country, assessing correlations between serum concentrations of several chemical compounds and potential health effects in general population.  相似文献   

10.
Xing X  Zhu X  Li H  Jiang Y  Ni J 《Chemosphere》2012,86(4):368-375
Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID > QL > IQL > BT > BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results.  相似文献   

11.
This work examined the adoption of a sorbent-assisted ultrafiltration (UF) system for the reduction of Pb(II), Cu(II), Zn(II) and Ni(II) from industrial wastewater. In such a system metals were removed via several processes which included precipitation through the formation of hydroxides, formation of precipitates/complexes among the metal ions and the wastewater compounds, adsorption of metals onto minerals (bentonite, zeolite, vermiculite) and retention of insoluble metal species by the UF membranes. At pH = 6 the metal removal sequence obtained by the UF system was Pb(II) > Cu(II) > Zn(II) > Ni(II) in mg g−1 with significant amount of lead and copper being removed due to chemical precipitation and formation of precipitates/complexes with wastewater compounds. At this pH, zinc and nickel adsorption onto minerals was significant, particularly when bentonite and vermiculite were employed as adsorbents. Metal adsorption onto zeolite and bentonite followed the sequence Zn(II) > Ni(II) > Cu(II) > Pb(II), while for vermiculite the sequence was Ni(II) > Zn(II) > Cu(II) > Pb(II) in mg g−1. The low amount of Pb(II) and Cu(II) adsorbed by minerals was attributed to the low available lead and copper concentration. At pH = 9 the adoption of UF could effectively reduce heavy metals to very low levels. The same was observed at pH = 8, provided that minerals were added. The prevailing metal removal process was the formation of precipitates/complexes with wastewater compounds.  相似文献   

12.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

13.
This paper investigated some selected estrogenic compounds (4-t-octylphenol: 4-t-OP; 4-nonylphenols: 4-NP; bisphenol-A: BPA; diethylstilbestrol: DES; estrone: E1; 17β-estradiol: E2; 17α-Ethinylestradiol: EE2; triclosan: TCS) and estrogenicity in the Liao River system using the combined chemical and in vitro yeast screen bioassay and assessed their ecological risks to aquatic organisms. The estrogenic compounds 4-t-OP, 4-NP, BPA, E1, E2 and TCS were detected in most of the samples, with their concentrations up to 52.1 2065.7, 755.6, 55.8, 7.4 and 81.3 ng/L in water, and up to 8.6, 558.4, 33.8, 7.9, <LOQ and 33.9 ng/g in sediment, respectively. However, DES and EE2 were not detected in the Liao River. The estrogen equivalents (EEQ) of the water and sediment samples were also measured by the bioassay. High estrogenic risks to aquatic organisms were found in the river sections of metropolitan areas and the lower reach of the river system.  相似文献   

14.
Different transformation processes for nitrophenols in the atmospheric aqueous phase were considered to assess their relative importance, and their ability to account for the higher occurrence of 4-nitrophenol (4NP) compared to 2-nitrophenol (2NP) in the atmosphere. The importance of the different processes was in the order ?OH > ?NO3 > direct photolysis > nitration to 2,4-dinitrophenol. 2NP is more reactive than 4NP with the hydroxyl radical, but the difference is low. Accordingly, such a process could account for the higher atmospheric occurrence of 4NP only if the observed atmospheric nitrophenols were what was left of an almost complete degradation by ?OH. This would imply the unlikely scenario that the known nitrophenol sources to the atmosphere were only a limited fraction of the actual ones. A more likely, tentative possibility would be connected with the higher occurrence of 4NP on particles. If the reactivity order of nitrophenols in the atmospheric compartments was water droplets > gas phase > particles, particulate matter could act as a reservoir of 4NP. 2NP would undergo degradation in gas phase or solution at a higher rate than 4NP on particles, which could decrease the atmospheric levels of 2NP below those of 4NP.  相似文献   

15.
Oxidation of bisphenol F (BPF) by manganese dioxide   总被引:1,自引:0,他引:1  
Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO2. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn2+ > Ca2+ > Mg2+ > Na+ and HPO42− > Cl > NO3 ≈ SO42−, respectively. A total of 5 products were identified, from which a tentative pathway was proposed.  相似文献   

16.
Cai M  Xie Z  Möller A  Yin Z  Huang P  Cai M  Yang H  Sturm R  He J  Ebinghaus R 《Chemosphere》2012,87(9):989-997
Neutral polyfluorinated alkyl substances (PFASs) were measured in high-volume air samples collected on board the research vessel Snow Dragon during the 4th Chinese National Arctic Expedition from the Japan Sea to the Arctic Ocean in 2010. Four volatile and semi-volatile PFASs (fluorotelomer alcohols (FTOHs), fluorotelomer acids (FTAs), perfluoroalkyl sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) were analyzed respectively in the gas and particle phases. FTOHs were the dominant PFASs in the gas phase (61-358 pg m−3), followed by FTAs (5.2-47.9 pg m−3), FASEs (1.9-15.0 pg m−3), and FASAs (0.5-2.1 pg m−3). In the particle phase, the dominant PFAS class was FTOHs (1.0-9.9 pg m−3). The particle-associated fraction followed the general trend of FASEs > FASAs > FTOHs. Compared with other atmospheric PFAS measurements, the ranges of concentrations of ∑FTOH in this study were similar to those reported from Toronto, north America (urban), the northeast Atlantic Ocean, and northern Germany. Significant correlations between FASEs in the gas phase and ambient air temperature indicate that cold surfaces such as sea-ice, snowpack, and surface seawater influence atmospheric FASEs.  相似文献   

17.
Multi-walled carbon nanotube-filled electrospun nanofibrous membranes (MWCNT-ENFMs) were prepared by electrospinning. The addition of MWCNTs (0.5 wt.% vs. ENFMs) doubled the specific surface area and tensile strength of the ENFMs. The MWCNT-ENFMs were used to adsorb perfluorooctane sulfonate (PFOS) in aqueous solutions. The sorption kinetics results showed that the sorption rate of PFOS onto the MWCNT-ENFMs was much higher than the sorption rate of PFOS onto the pure ENFMs control, and the pseudo-second-order model (PSOM) described the sorption kinetics well. The sorption isotherms indicated that the sorption capacity of the MWCNT-ENFMs for PFOS (16.29 ± 0.26 μmol g−1) increased approximately 18 times, compared with the pure ENFMs (0.92 ± 0.06 μmol g−1). Moreover, the solution pH significantly affected the sorption efficiency and sorption mechanism. The MWCNT-ENFMs were negatively charged from pH 2.0–10.0, but the electrostatic repulsion between the MWCNT-ENFMs and PFOS was overcome by the hydrophobic interactions between PFOS and the MWCNTs or nanofibers. The strong hydrophobic interactions between PFOS and the MWCNTs played a dominant role in the sorption process. For the pure ENFMs, the electrostatic repulsion was conquered by the hydrophobic interactions between PFOS and the nanofibers at pH > 3.1. In addition to the hydrophobic interactions, an electrostatic attraction between PFOS and the pure ENFMs was involved in the sorption process at pH < 3.1.  相似文献   

18.
Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-β-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO4), with IC50 values of 0.82 μM and 0.85 μM, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility.  相似文献   

19.
Ikem A  Adisa S 《Chemosphere》2011,82(2):259-267
Multivariate statistical methods (hierarchical clustering analysis: HCA, and principal component analysis: PCA) were used to study the influence of runoff and other diffuse pollution sources on lake water chemistry of Hough Park lake in Central Missouri. In addition, heavy metal concentrations in lake littoral sediment were evaluated for enrichment and probable ecological risk. The abundance of macronutrients in the lake water column followed the order: Ca > Mg > TIC > K > Na > S > NO3 - N > Fe > NH3 - N > TP. Heavy metal concentrations in the lake water column were below acute and chronic level ecological guidelines. TN:TP ratios (range: 4.1-6.8) revealed nitrogen limitation of algal and other photosynthetic plant growth. The HCA showed two major clusters of similarity between the sampling points suggesting different pollution levels for the clusters. PCA 1, 2 and 3 reflected the influence of natural biochemical processes, atmospheric deposition and runoff respectively on lake water chemistry. The abundance of heavy metals and the normalizing element (Li) in littoral sediment (<63 μm fraction) samples analyzed in decreasing order were: Mn > Zn > Cr > Ni > Li > Cu > Pb > Cd > Hg. The average concentration of Cr, Mn and Ni in littoral sediment fraction exceeded the respective lowest effects level (LEL) threshold limit. Metal bioavailability in sediment fraction was low since the most labile metal species contained between 0% and 11% of the total metal content. Using the risk assessment code (RAC) criteria, only Mn posed a medium risk to the lake system.  相似文献   

20.
Hojaji E 《Chemosphere》2012,89(3):319-326
The binding behavior of lignin for Pb, Cu, Co, Mn, Cd and Ni was studied using the diffusive gradients in thin films technique (DGT). Samplers with different structures of diffusive gel were used in the well-stirred systems containing known concentrations of metals along with (a) 10, 20 and 40 μM lignin and; (b) 0.64 and 6.47 μM Suwannee river fulvic acid + 40 μM lignin at an ionic strength of 0.01 M (NaNO3) and pH = 7. Diffusion coefficients of lignin complexes in acrylamide gels were estimated and found to be less than 5% of the equivalent coefficients for the uncomplexed metal ions. These values were used to calculate concentrations of labile metals from DGT measurements in solutions, where lignin could discriminate metals in the order of Pb+2 > Cu+2 > Cd+2 > Ni+2 > Co+2 > Mn+2. Stability constants (Log K) were calculated using Visual MINTEQ II and WHAM V software. The K values were compared with the stability constants from titration of Pb and Cd with 10 μM lignin aqueous samples and with those of humic substances in natural waters. The constants obtained from measurement of complexing capacities might bias the real corresponding values unless two line regression analyses on titration data are considered. The DGT study of fractionation of metal species at varying ratios indicated that the proportion of organic complexes decreased with increasing ratios and gradually more metals were exchanged with inorganic phases. Speciation of Pb and Cd is affected by the concentrations of FA, Cd is dominantly bound with FA while Pb is evenly partitioned between the ligands. The comprehensive knowledge of metal-lignin complexes sheds some light on in situ operational speciation information that can be achieved by DGT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号