首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Hsu WM  Hsi HC  Huang YT  Liao CS  Hseu ZY 《Chemosphere》2012,86(6):606-613
The accumulation of As in rice due to groundwater irrigation in paddy fields represents a serious health hazard in South and Southeast Asia. In Taiwan, the fate of As in long-term irrigated paddy fields is poorly understood. Groundwater, surface soil, and rice samples were collected from a paddy field that was irrigated with As-containing groundwater in southwestern Taiwan. The purpose of this study is to elucidate the source and sink of As in the paddy field by comparing the As fractions in the soils that were obtained by a sequential extraction procedure (SEP) with the As uptake of rice. The risks associated with eating rice from the field can thus be better understood. The concentration of As in groundwater varied with time throughout the growing seasons of rice, but always exceeded the permitted maximum (10 μg L−1) for drinking water by the WHO. The As concentration increased with the concentration of Fe in the groundwater, supporting the claim that a large amount of As was concentrated in the Fe flocs collected from the internal wall of the groundwater pump. The results of the SEP revealed that As bound with amorphous and crystalline hydrous oxides exhibited high availability in the soils. The root of rice accumulated the largest amount of As, followed by the straw, husk, and grain. Although the As concentration in the rice grain was less than 1.0 mg kg−1, the estimated intake level was close to the maximum tolerable daily intake of As, as specified by the WHO.  相似文献   

2.
Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L−1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L−1) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity.  相似文献   

3.
Groundwater and sediment samples were collected along a flow path in the Aquia aquifer (Paleocene), Maryland in order to examine and study the factors influencing "evolution" of arsenic (As) in these groundwaters. The Aquia crops out near Washington, DC, where it is unconfined, and extends approximately 90 km down dip to the south and east towards and beneath the Chesapeake Bay. The studied flow path was chosen owing to (i) the number of accessible wells, (ii) differences in total dissolved As concentrations in groundwaters from some of the sampled wells, which reach values >/=667 nmol kg(-1) or >/=50 ppb, and (iii) the distinct difference in total dissolved As concentrations in Aquia groundwaters between the northern and southern portions of the study area. In groundwater samples, in situ separation of inorganic As species [As(III) and As(V)] were performed by using anion exchange chromatography. Subsequently, As concentrations were determined by inductively coupled plasma mass spectrometry. In situ measurements of Fe concentrations and speciation, dissolved S(-II) concentrations, pH, alkalinity, and oxidation-reduction potential (Eh) were determined to establish the oxidation-reduction conditions and solution chemistry along the flow path. Concentrations of As in 12 analyzed groundwater samples range from approximately 0.75 to 1 072 nmol kg(-1), and As(III) concentrations ranging from 0.24 to 980 nmol kg(-1) appears to be the dominant form of As in solution. 50% of the studied wells yielded groundwaters with concentrations that exceed the US EPA's Maximum Contaminant Level for As in drinking water of 133 nmol kg(-1) or 10 ppb. In order to examine the solid phase speciation of As within the aquifer sediments, we collected a number of Aquia sediment samples from a drill core that was archived at the Maryland Geological Survey. These sediment samples were evaluated using a previously established sequential extractions procedure. Solid phase As concentrations range between 973 and 2,012 nmol kg(-1). Additionally, petrographic, X-Ray diffraction and diffuse reflectance spectroscopy analyses of the Aquia sediments reveal presence of glauconite, and smectite along with goethite and hematite within the samples. Here, we present the possible mechanisms responsible for the elevated As concentrations in the studied groundwaters of the Aquia aquifer.  相似文献   

4.
Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate   总被引:32,自引:0,他引:32  
Alam MG  Tokunaga S  Maekawa T 《Chemosphere》2001,43(8):1035-1041
An environment-friendly and cost-effective extraction method has been studied for the removal of arsenic from contaminated soil. A yellow-brown forest soil was contaminated with arsenic(V) and used as a model soil. Among various potassium and sodium salts, potassium phosphate was most effective in extracting arsenic, attaining more than 40% extraction in the pH range of 6–8 with minimum damage to the soil properties. Exchange mechanism is proposed for the extraction of arsenic from soil by phosphate. Sequential extraction shows that phosphate is effective in extracting arsenic of Al- and Fe-bound forms. Arsenic of residual form was not extracted. Arsenic was efficiently extracted by phosphate solution of pH 6.0 at 300 mM phosphate concentration and at 40°C.  相似文献   

5.
Sediments affected by fluctuations of hydrocarbon contaminated groundwater were studied at a former military site. Due to remediation, groundwater table fluctuation (GWTF) extends over approximately one meter. Three cores were collected, penetrating through the GWTF zone. Magnetic parameters, sediment properties and hydrocarbon content were measured. We discovered that magnetic concentration parameters increased towards the top of the GWTF zone. Magnetite is responsible for this enhancement; rock magnetic parameters indicate that the newly formed magnetite is in a single domain rather than a superparamagnetic state. The presence of hydrocarbons is apparently essential for magnetite to form, as there is clearly less magnetic enhancement in the core, which is outside of the strongly contaminated area. From our results we conclude that the top of the fluctuation zone has the most intensive geomicrobiological activity probably responsible for magnetite formation. This finding could be relevant for developing methods for simply and quickly detecting oil spills.  相似文献   

6.
The residue of antibiotics is becoming an intractable environmental problem in many organic vegetable bases. However, their residual levels and distribution are still obscure. This work systematically analyzed the occurrence and migration of typical veterinary antibiotics in organic vegetable bases, northern China. The results showed that there was no obvious geographical difference in antibiotic distribution between soil and manure. A simple migration model can be easy and quick to predict the accumulation of antibiotics in soil. Antibiotics were mainly taken up through water transport and passive absorption in vegetables. The distribution of antibiotics in a plant was in the sequence leaf > stem > root, and performed biological accumulation. The residues of antibiotics in all samples in winter were significantly higher than those in summer. Overall, this work can lay the foundation for understanding ecological risk of antibiotics and their potential adverse effects on human health by food chain.  相似文献   

7.
The acquaintance of arsenic concentrations in rice grain is vital in risk assessment. In this study, we determined the concentration of arsenic in 282 brown rice grains sampled from Hainan Island, China, and discussed its possible relationships to the considered soil properties. Arsenic concentrations in the rice grain from Hainan Island varied from 5 to 309 μg/kg, with a mean (92 μg/kg) lower than most published data from other countries/regions and the maximum contaminant level (MCL) for Asi in rice. The result of correlation analysis between grain and soil properties showed that grain As concentrations correlated significantly to soil arsenic speciation, organic matter and soil P contents and could be best predicted by humic acid bound and Fe-Mn oxides bound As fractions. Grain arsenic rises steeply at soil As concentrations lower than 3.6 mg/kg and gently at higher concentrations.  相似文献   

8.
Although arsenic (As) contamination of groundwater in the Bengal Basin has received wide attention over the past decade, comparative studies of hydrogeochemistry in geologically different sub-basins within the basin have been lacking. Groundwater samples were collected from sub-basins in the western margin (River Bhagirathi sub-basin, Nadia, India; 90 samples) and eastern margin (River Meghna sub-basin; Brahmanbaria, Bangladesh; 35 samples) of the Bengal Basin. Groundwater in the western site (Nadia) has mostly Ca-HCO(3) water while that in the eastern site (Brahmanbaria) is much more variable consisting of at least six different facies. The two sites show differences in major and minor solute trends indicating varying pathways of hydrogeochemical evolution However, both sites have similar reducing, postoxic environments (p(e): +5 to -2) with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and similarity in As mobilization mechanism. The trends of various redox-sensitive solutes (e.g. As, CH(4), Fe, Mn, NO(3)(-), NH(4)(+), SO(4)(2-)) indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from source minerals, would tend to remain in solution because of the complex interplay among the electron acceptors.  相似文献   

9.
Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO42− concentrations and δ34S values indicates that bacterial reduction of SO42− occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L−1), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels.  相似文献   

10.
Major ion, trace element, and stable isotope analyses were performed on groundwater samples collected during November 2005 and 2006 in Chia-Nan plain of southwestern Taiwan to examine As mobilization in aquifers. The high concentrations of As, Fe and Mn in the groundwater is consistent with low Eh values (under moderately reduced state). Moreover, the observed Na/Cl and SO(4)/Cl molar ratios in groundwater demonstrate the influence of seawater intrusion. Seawater intrusion could provide required electron acceptors (i.e., SO(4)) for bacterial sulfate reduction and promote reducing conditions that are favorable for As mobilization. The concurrent increases in the concentrations of Fe and Mn from 2005 to 2006 may be caused by bacterial Fe(III) and Mn(IV) reduction. Geochemical modeling demonstrate that As(III) is the dominant As species and the presence of Fe-bearing carbonates, sulfides, and oxide phases may locally act as potential sinks for As. Mud volcano fluids were also collected and analyzed to assess the possible source of As in the Chia-Nan plain groundwater. The oxygen and hydrogen isotopic signatures indicate that the As-rich mud volcano fluids may have been modified by chemical exchange with (18)O-rich crustal rocks and possibly originated from mixing of deep brines with circulating meteoric water. Thus As in the Chia-Nan plain groundwater may have been evolved from deep crustal fluids or rock sources. The hydrogeochemistry and widespread As enrichment in groundwater of Chia-Nan plain result from multiple processes, e.g., de-watering of deep crustal fluids, seawater intrusion, and biogeochemical cycling of Fe, As, and S in alluvial sediments.  相似文献   

11.
Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from <0.5 μg L−1 to 278 μg L−1, with over half exceeding the WHO guideline of 10 μg L−1. 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions.  相似文献   

12.
An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033 mg kg−1 As and 371 mg kg−1 Cr) and slightly contaminated soil (225 mg kg−1 As and 27 mg kg−1 Cr). Compared to an untreated reference soil, amendment with 5% WTR reduced leaching in the highly contaminated soil by 91% for Cr and 98% for As. No aging effect was observed after 103 d. In a small field experiment, soil was mixed with 2.5% WTR in situ. Pore water was extracted during 3 years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields, mostly in the deepest samplers. This is likely due to the formation of a pseudo-gley because of precipitation surplus. Stabilization of arsenic and chromium contaminated soil using WTR is a promising method but the transformation of ferrihydrite in soil proves a concern in case of waterlogged soils. Still the amendment minimized the leaching of arsenic, even in cases of seasonal releases.  相似文献   

13.
Kim SH  Kim K  Ko KS  Kim Y  Lee KS 《Chemosphere》2012,87(8):851-856
The co-contamination of arsenic (As) and fluoride (F) in shallow aquifers is frequently observed worldwide, and the correlations between those contaminants are different according to the redox conditions. This study geochemically explores the reasons for the co-contamination and for the redox-dependent correlations by investigating the groundwater of an alluvial aquifer in Korea. Geochemical signatures of the groundwater in the study area show that the As concentrations are enriched by the reductive dissolution of Fe-(hydr)oxides, and the correlations between As and F concentrations are poor comparatively to those observed in the oxidizing aquifers. However, F concentrations are strongly dependent on pH. Desorption/adsorption experiments using raw soils and citrate-bicarbonate-dithionite treated soils indicated that Fe-(hydr)oxides are the important As and F hosts causing the co-contamination phenomenon. The weaker correlation between F and As in reducing aquifers is likely to be associated with sulfate reduction, which removes As from groundwater without changing the F concentration.  相似文献   

14.
中国台湾地区土壤及地下水污染整治基金管理会自2001年成立以来,不断完善管理架构和管理体系,发布相关领域的法律法规、行政规则和公告,有效运行污染整治基金的财务筹措和使用等经济管理机制。开展了一系列行之有效的预防、监测、调查、评估等管理工作,为污染场地的识别和筛选奠定了坚实的基础。对于污染场地的整治工作,采用标准和风险评估相结合的验收方式,推行场地可持续利用的绿色修复技术。重点研究台湾地区土壤及地下水污染整治工作的管理政策、模式和措施,总结相关经验,为中国土壤及地下水污染防治工作提供借鉴和参考。  相似文献   

15.
Samples were collected every 2-4 weeks from a set of 37 monitoring wells over a period of 2-3 years in Araihazar, Bangladesh, to evaluate the temporal variability of groundwater composition for As and other constituents. The monitoring wells are grouped in 6 nests and span the 5-91 m depth range. Concentrations of As, Ca, Fe, K, Mg, Mn, Na, P, and S were measured by high-resolution ICPMS with a precision of 5% or better; concentrations of Cl were measured by ion chromatography. In shallow wells <30 m deep, As and P concentrations generally varied by <30%, whereas concentrations of the major ions (Na, K, Mg, Ca and Cl) and the redox-sensitive elements (Fe, Mn, and S) varied over time by up to +/-90%. In wells tapping the deeper aquifers >30 m often below clay layers concentrations of groundwater As were much lower and varied by <10%. The concentrations of major cations also varied by <10% in these deep aquifers. In contrast, the concentration of redox-sensitive constituents Fe, S, and Mn in deep aquifers varied by up to 97% over time. Thus, strong decoupling between variations in As and Fe concentrations is evident in groundwaters from shallow and deep aquifers. Comparison of the time series data with groundwater ages determined by (3)H/(3)He and (14)C dating shows that large seasonal or inter-annual variations in major cation and chloride concentrations are restricted to shallow aquifers and groundwater recharged <5 years ago. There is no corresponding change in As concentrations despite having significant variations of redox sensitive constituents in these very young waters. This is attributed to chemical buffering due to rapid equilibrium between solute and solid As. At two sites where the As content of groundwater in existing shallow wells averages 102 microg/L (range: <5 to 648 microg/L; n=118) and 272 microg/L (range: 10 to 485 microg/L; n=65), respectively, a systematic long-term decline in As concentrations lends support to the notion that flushing may slowly deplete an aquifer of As. Shallow aquifer water with >5 years (3)H/(3)He age show a constant As:P molar ratio of 9.6 over time, suggesting common mechanisms of mobilization.  相似文献   

16.
This article provides a critical review of the environmental chemistry of inorganic antimony (Sb) in soils, comparing and contrasting findings with those of arsenic (As). Characteristics of the Sb soil system are reviewed, with an emphasis on speciation, sorption and phase associations, identifying differences between Sb and As behaviour. Knowledge gaps in environmentally relevant Sb data for soils are identified and discussed in terms of the limitations this imposes on understanding the fate, behaviour and risks associated with Sb in environmental soil systems, with particular reference to mobility and bioavailability.  相似文献   

17.
Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.  相似文献   

18.
The changing contaminant pattern with travelled distance was investigated in the anaerobic groundwater plume downstream from an extended zone containing residual NAPL at a former gas manufacturing plant. With increasing distance, O- and N-heterocyclic aromatic compounds are enriched in the plume relative to the usually assessed coal tar constituents (poly- and monocyclic aromatic compounds). In a first approximation, the overall concentration decrease of the investigated compounds follows a first order overall decay. The half life distance in the plume downgradient from the source varied between 20 m for benzene and up to 167-303 m for alkyl-naphthalenes. Acenaphthene is degraded only within about 50 m downstream from the source area, then its concentration remains constant (ca. 180 microg/l) and far above the legal limit. Dimethyl-benzofurans were the most recalcitrant among all compounds which could be quantified with the analytical method available. The overall groundwater contamination in the plume is seriously underestimated if only BTEX and 16-EPA-PAHs are monitored.  相似文献   

19.
Quazi S  Sarkar D  Datta R 《Chemosphere》2011,84(11):1563-1571
Although organoarsenical pesticides are being phased out, sites with high concentrations of organic arsenical residues still exist due to the long-term application of these pesticides. The biotic and abiotic speciation of dimethylarsinic acid (DMA) can result in the formation of inorganic arsenic (As) species. Oxidation state, retention, and thereby persistence, varies according to temporal changes, influencing the availability and toxicity of contaminants. The current greenhouse study aimed at evaluating temporal changes in the oxidation state of As, geochemical partitioning, and bioaccessibility. Four soils with varying physiochemical properties were contaminated with DMA at two concentrations (675 and 1500 mg kg−1 of As). Rice plants were grown for a 6 months period, following which, the soils were allowed to age. The operationally defined forms of As and its bioaccessibility was analyzed at 0, 6 months, 1 year, and 3 years. Changes in oxidation state of As were evaluated immediately after spiking and after 3 years of soil-pesticide equilibration. Results show that geochemical partitioning of As was affected significantly (P < 0.05) by soil type, loading rates, and equilibration time. Arsenic was bound mainly to the poorly-crystalline Fe/Al-oxyhydroxides in the soil. However, these interactions did not affect As bioaccessibility, presumably due to the dissolution of the bound fractions of As in the acidic stomach. While 74-94% of the total bioaccessible As was transformed to As(V), 4-19% was transformed to the more toxic As(III). This study indicates that although aging affected the geochemical partitioning of As in the soil, bioaccesibility was controlled by the gastric pH.  相似文献   

20.
Pesticide mineralization and sorption were determined in 75 soil samples from 15 individually drilled holes through the vadose zone along a 28 km long transect of the Danish outwash plain. Mineralization of the phenoxyacetic acid herbicide MCPA was high both in topsoils and in most subsoils, while metribuzine and methyltriazine-amine was always low. Organic matter and soil pH was shown to be responsible for sorption of MCPA and metribuzine in the topsoils. The sorption of methyltriazine-amine in topsoil was positively correlated with clay and negatively correlated with the pH of the soil. Sorption of glyphosate was tested also high in the subsoils. One-dimensional MACRO modeling of the concentration of MCPA, metribuzine and methyltriazine-amine at 2 m depth calculated that the average concentration of MCPA and methyltriazine-amine in the groundwater was below the administrative limit of 0.1 μg/l in all tested profiles while metribuzine always exceeded the 0.1 μg/l threshold value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号