首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterise indirect effects of ionising radiation on aquatic microbial communities, effects of acute γ-irradiation were investigated in a microcosm consisting of populations of green algae (Chlorella sp. and Scenedesmus sp.) and a blue-green alga (Tolypothrix sp.) as producer; a ciliate protozoan (Cyclidium glaucoma), rotifers (Lecane sp. and Philodina sp.) and an oligochaete (Aeolosoma hemprichi) as consumer; and more than four species of bacteria as decomposers. Population changes in the constituent organisms were observed over 160 days after irradiation. Prokaryotic community structure was also examined by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. Principle response curve analysis revealed that the populations of the microcosm as a whole were not significantly affected at 100 Gy while they were adversely affected at 500-5000 Gy in a dose-dependent manner. However, some effects on each population, including each bacterial population detected by DGGE, did not depend on radiation doses, and some populations in the irradiated microcosm were larger than those of the control. These unexpected results are regarded as indirect effects through interspecies interactions, and possible mechanisms are proposed originating from population changes in other organisms co-existing in the microcosm. For example, some indirect effects on consumers and decomposers likely arose from interspecies competition within each trophic level. It is also likely that prey-predator relationships between producers and consumers caused some indirect effects on producers.  相似文献   

2.
Radiation-induced adaptive response in fish cell lines   总被引:1,自引:0,他引:1  
There is considerable interest at present in low-dose radiation effects in non-human species. In this study gamma radiation-induced adaptive response, a low-dose radiation effect, was examined in three fish cell lines, (CHSE-214 (Chinook salmon), RTG-2 (rainbow trout) and ZEB-2J (zebrafish)). Cell survival after exposure to direct radiation with or without a 0.1 Gy priming dose, was determined using the colony forming assay for each cell line. Additionally, the occurrence of a bystander effect was examined by measuring the effect of irradiated cell culture medium from the fish cell lines on unexposed reporter cells. A non-linear dose response was observed for all cell lines. ZEB-2J cells were very sensitive to low doses and a hyper-radiosensitive (HRS) response was observed for doses <0.5 Gy. A typical protective adaptive response was not detected in any of the three fish cell lines tested. Rather, it was found that pre-exposure of these cells to 0.1 Gy radiation sensitized the cells to subsequent high doses. In CHSE-214 cells, increased sensitivity to subsequent high doses of radiation was observed when the priming and challenge doses were separated by 4 h; however, this sensitizing effect was no longer present when the interval between doses was greater than 8 h. Additionally, a "protective" bystander response was observed in these cell lines; exposure to irradiated medium from fish cells caused increased cloning efficiency in unirradiated reporter cells. The data confirm previous conclusions for mammalian cells that the adaptive response and bystander effect are inversely correlated and contrary to expectations probably have different underlying mechanisms.  相似文献   

3.
Free-ranging, wild meadow voles (Microtus pennsylvanicus) were exposed to gamma radiation from a (137)Cs irradiator in a series of experiments conducted on six 1-ha meadows within a mixed deciduous forest in Manitoba, Canada. Over a period of 1-1.5 years in each of three experiments, vole populations were monitored with capture-mark-release techniques at nominal exposure rates of 200x, 9000x and 40,000x background. No effects on population or individual characteristics were detected up to the highest exposure rate (81 mGy/d). At this level, third generation voles were monitored up to a lifetime dose of about 5.7 Gy, at a measured dose rate of 44 mGy/d. Smaller numbers of overwintered animals survived and reproduced normally at doses up to 10 Gy. These results are discussed in terms of low-LET, external chronic radiation effects on rodents in the laboratory and the field, relative to current views on appropriate benchmarks for the protection of biota.  相似文献   

4.
This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K(2)SO(4)-extractable and microbially stored (137)Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of (137)Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored (137)Cs amounted to 0.64+/-0.14kBqm(-2) which corresponds to about 1.2-2.7% of the total (137)Cs soil inventory. At lower altitudes, microbial (137)Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored (137)Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of (137)Cs in soils and in the (137)Cs uptake by plants.  相似文献   

5.
Derivation of effect benchmark values for each taxonomic group, which has been difficult due to lack of experimental effects data, is required for more adequate protection of the environment from ionising radiation. Estimation of effects doses from nuclear DNA mass and subsequent species sensitivity distribution (SSD) analysis were proposed as a method for such a derivation in acute irradiation situations for assumed nuclear accident scenarios. As a case study, 5% hazardous doses (HD5s), at which only 5% of species are acutely affected at 50% or higher lethality, were estimated on a global scale. After nuclear DNA mass data were obtained from a database, 50% lethal doses (LD50s) for 4.8 and 36% of the global Anura and Caudata species, respectively, were estimated by correlative equations between nuclear DNA mass and LD50s. Differences between estimated and experimental LD50s were within a factor of three. The HD5s obtained by the SSD analysis of these estimated LD50s data were 5.0 and 3.1 Gy for Anura and Caudata, respectively. This approach was also applied to the derivation of regional HD5s. The respective HD5s were 6.5 and 3.2 Gy for Anura and Caudata inhabiting Japan. This HD5 value for the Japanese Anura was significantly higher than the global value, while Caudata had no significant difference in global and Japanese HD5s. These results suggest that this approach is also useful for derivation of regional benchmark values, some of which are likely different from the global values.  相似文献   

6.
In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of (60)Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small "adapting" stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment.  相似文献   

7.
A study was conducted to see the effect of arsenic contamination on soil quality indicators, viz., microbial biomass, soil respiration, fluorescein diacetate and dehydrogenase (DHG) activity in arsenic contaminated soils of West Bengal. All the parameters were significantly and negatively correlated with all the form of arsenic (bioavailable and total) but the microbial metabolic quotient was significantly and positively correlated with all forms of arsenic, indicating arsenic induced stress to the soil microbial community. This may be due to part of the microbial biomass, which is located in the inner parts of the micro-aggregates of soil, which is affected by arsenic accumulates present in soil particles. Linear regression analysis revealed that the bioavailable arsenic exerted greater inhibitory effect on the soil microbial population than the total arsenic content of soils. Water-soluble arsenic showed more inhibitory effect than NaHCO(3) extractable form, in their association with biological properties of the contaminated soils. Water-soluble form of arsenic was much more toxic than insoluble forms. This signified that with increase in bioavailability, the arsenic exerted more inhibitory effect on these parameters. It is thus suggested that the microbial biomass, fluorescein diacetate and dehydrogenase activity alone and expressed on a soil organic matter basis along with the soil respiration parameters can be helpful in assessing the effects of arsenic on the size and activity of microbial biomass in soils.  相似文献   

8.
The effect of γ irradiation at doses of 1, 5, 10, and 20 kGy on the microflora of ordinary chernozem soil has been studied. The time course of the restoration of the microorganism numbers over 180 days after γ irradiation has been studied in model experiments. The microorganism radioresistance decreases in the following order: amylolytic bacteria > Azotobacter > spore-forming bacteria > ammonifiers > micromycetes. A dose of 20 kGy has a 96% suppressing effect on all microorganisms. Model experiments on the restoration of the irradiated soil microflora have revealed different rates of increase in the numbers of microorganism groups depending on the dose and incubation time.  相似文献   

9.
A methodological approach for a comparative assessment of ionising radiation effects on man and non-human species, based on the use of Radiation Impact Factor (RIF) - ratios of actual exposure doses to biota species and man to critical dose is described. As such doses, radiation safety standards limiting radiation exposure of man and doses at which radiobiological effects in non-human species were not observed after the Chernobyl accident, were employed. For the study area within the 30km ChNPP zone dose burdens to 10 reference biota groups and the population (with and without evacuation) and the corresponding RIFs were calculated. It has been found that in 1986 (early period after the accident) the emergency radiation standards for man do not guarantee adequate protection of the environment, some species of which could be affected more than man. In 1991 RIFs for man were considerably (by factor of 20.0-1.1 x 10(5)) higher compared with those for selected non-human species. Thus, for the long term after the accident radiation safety standards for man are shown to ensure radiation safety for biota as well.  相似文献   

10.
Bioremediation of oil sludge-contaminated soil   总被引:21,自引:0,他引:21  
Bioremediation has become an important method for the restoration of oil-polluted environments by the use of indigenous or selected microbial flora. Several factors such as aeration, use of inorganic nutrients or fertilizers and the type of microbial species play a major role in the remediation of oil-contaminated sites. Experiments were undertaken for bioremediation of oil sludge-contaminated soil in the presence of a bacterial consortium, inorganic nutrients, compost and a bulking agent (wheat bran). Experiments were conducted in glass troughs for the 90-day period. Bulked soil showed more rapid degradation of oil compared to all other amendments. During the experimental period, wheat bran-amended soil showed 76% hydrocarbon removal compared to 66% in the case of inorganic nutrients-amended soil. A corresponding increase in the number of bacterial populations was also noticed. Addition of the bacterial consortium in different amendments significantly enhanced the removal of oil from the petroleum sludge from different treatment units.  相似文献   

11.
To evaluate the consequences of irradiation on the vegetation of the Chernobyl region, gene expression was compared in morphologically normal and dwarf needles from the same Pinus sylvestris trees in a region where the absorbed dose was 3-5 Gy. To compare the levels of gene expression, arrays consisting of 373 Pinus taeda cDNAs were hybridized with labeled cDNA derived from normal and dwarf needles of P. sylvestris. Twelve genes were significantly (P<0.01) up- or down-regulated between normal and dwarf needles for all five trees taken together. Five of these, related to stress or development, were up- or down-regulated 1.25-1.7-fold in the dwarf needles. There were no significant differences in (137)Cs content in the normal and dwarf needles, or in elongation growth rate of seedlings raised under controlled conditions from seed derived from trees in the region that had received a radiation dose over the range 2-12 Gy.  相似文献   

12.
Extracellular DNA is omnipresent in aquatic environments and is thought to be a genetic material for horizontal gene transformation between microorganisms. We studied the impact of gamma irradiation on the transformation efficiency (transformants number per ng of DNA per ml) of extracellular DNA. Plasmid pEGFP as a model extracellular DNA was irradiated by gamma rays. The transformation efficiency decreased with the increase in radiation dose. A total dose of 10Gy is normally not lethal for microorganisms but certainly affects the transformation efficiency of extracellular DNA. The decrease in the efficiency would be induced by strand breaks of extracellular DNA because the yield of both single-strand breaks (SSBs) and double-strand breaks (DSBs) increased with the increase in radiation dose. The relative transformation efficiency of SSBs and DSBs to that of covalently closed circles (CCCs) was 30.3% and 0.2%, respectively. This impact on natural transformation suggests an inability of microorganisms to acquire new characteristics which should be normally acquired.  相似文献   

13.
Local dandelion (Taraxacum officinales.l.) populations were studied in the areas of the Eastern Ural Radioactive Trace and the floodplain of the Techa River in its upper reaches. In impact plots, the density of soil and plant cover contamination with 90Sr and 137Cs exceeded the background level by factors of 13–440 and 2–500, respectively; the radiation load exceeded the background level by factors of 1.5 to 45. The seed progeny of plants from these plots was characterized by a high proportion of abnormal seedlings and an increased level of chromosome aberrations in meristem cells. In some years, variation in the seedling viability, growth rate, and developmental rate in these plots exceeded the reaction norm of plants from the background plot, demonstrating both stimulation and inhibition of growth processes. The response of seeds to acute irradiation at high challenging doses varied depending on the level of background radiation in the plots.  相似文献   

14.
Currently, there is no established methodology to estimate radiation doses to non-human biota. Therefore, in this study, various dose models were used to estimate radiation doses to moor frogs (Rana arvalis) in a wetland ecosystem contaminated with (137)Cs. External dose estimations were based on activity concentrations of (137)Cs in soil and water, considering changes in habitat over a life-cycle. Internal doses were calculated from the activity concentrations of (137)Cs measured in moor frogs. Depending on the dose model used, the results varied substantially. External dose rates ranged from 21 to 160 mGy/y, and internal dose rates varied between 1 and 14 mGy/y. Maximum total dose rates to frogs were below the expected safe level for terrestrial populations, but close to the suggested critical dose rate for amphibians. The results show that realistic assumptions in dose models are particularly important at high levels of contamination.  相似文献   

15.
Effects of acute γ-irradiation were investigated in the aquatic microcosm consisting of green algae (Chlorella sp. and Scenedesmus sp.) and a blue–green alga (Tolypothrix sp.) as producers; an oligochaete (Aeolosoma hemprichi), rotifers (Lecane sp. and Philodina sp.) and a ciliate protozoan (Cyclidium glaucoma) as consumers; and more than four species of bacteria as decomposers. At 100 Gy, populations were not affected in any taxa. At 500–5000 Gy, one or three taxa died out and populations of two or three taxa decreased over time, while that of Tolypothrix sp. increased. This Tolypothrix sp. increase was likely an indirect effect due to interspecies interactions. The principal response curve analysis revealed that the main trend of the effects was a dose-dependent population decrease. For a better understanding of radiation risks in aquatic microbial communities, effect doses of γ-rays compared with copper, herbicides and detergents were evaluated using the radiochemoecological conceptual model and the effect index for microcosm.  相似文献   

16.
The purpose of this study was an evaluation of the effect levels of various toxic agents compared with acute doses of ionizing radiation for the experimental model ecosystem, i.e., microcosm mimicking aquatic microbial communities. For this purpose, the authors used the microcosm consisting of populations of the flagellate alga Euglena gracilis as a producer, the ciliate protozoan Tetrahymena thermophila as a consumer and the bacterium Escherichia coli as a decomposer. Effects of aluminum and copper on the microcosm were investigated in this study, while effects of gamma-rays, ultraviolet radiation, acidification, manganese, nickel and gadolinium were reported in previous studies. The microcosm could detect not only the direct effects of these agents but also the community-level effects due to the interspecies interactions or the interactions between organisms and toxic agents. The authors evaluated doses or concentrations of each toxic agent which had the following effects on the microcosm: (1) no effects; (2) recognizable effects, i.e., decrease or increase in the cell densities of at least one species; (3) severe effects, i.e., extinction of one or two species; and (4) destructive effects, i.e., extinction of all species. The resulting effects data will contribute to an ecological risk assessment of the toxic agents compared with acute doses of ionizing radiation.  相似文献   

17.
The United States Department of Energy (DOE) currently has in place a radiation dose standard for the protection of aquatic animals, and is considering additional dose standards for terrestrial biota. These standards are: 10 mGy/d for aquatic animals, 10 mGy/d for terrestrial plants, and, 1 mGy/d for terrestrial animals. Guidance on suitable approaches to the implementation of these standards is needed. A screening methodology, developed through DOE's Biota Dose Assessment Committee (BDAC), serves as the principal element of DOE's graded approach for evaluating radiation doses to aquatic and terrestrial biota. Limiting concentrations of radionuclides in water, soil, and sediment were derived for 23 radionuclides. Four organism types (aquatic animals; riparian animals; terrestrial animals; and terrestrial plants) were selected as the basis for development of the screening method. Internal doses for each organism type were calculated as the product of contaminant concentration, bioaccumulation factor(s) and dose conversion factors. External doses were calculated based on the assumption of immersion of the organism in soil, sediment, or water. The assumptions and default parameters used provide for conservative screening values. The screening methodology within DOE's graded approach should prove useful in demonstrating compliance with biota dose limits and for conducting screening assessments of radioecological impact. It provides a needed evaluation tool that can be employed within a framework for protection of the environment.  相似文献   

18.
为探究水电站扰动区人工植被恢复后土壤质量及肥力的变化,以向家坝植被混凝土、厚层基材和框格梁3种典型边坡下优势物种荩草根际与非根际土壤为研究对象,对土壤的养分和微生物生态化学计量比进行研究。结果表明:(1)植被混凝土、厚层基材样地的养分平均含量均显著高于框格梁样地;植被混凝土、框格梁样地下土壤养分含量在根际存在一定的富集,以有机碳的富集作用最为明显,而厚层基材样地则表现为土壤全量养分在根际土壤中存在亏缺;(2)植被混凝土和框格梁修复模式样地的土壤微生物量为根际土壤较高,MBC/MBN、MBC/MBP表现为非根际土壤较高,3种样地下根际与非根际土壤微生物生态化学计量比差异性显著(P<0.05);(3)相关性分析表明,土壤微生物碳、微生物氮、有机碳和全氮之间具有显著的正相关性(P<0.01),微生物量磷与土壤有机碳和全磷具有极显著的正相关性(P<0.01)。综合评价十数年后向家坝水电站工程扰动区人工修复土壤技术,植被混凝土和厚层基材修复措施对该区土壤全量养分含量的累积作用较好,框格梁样地的植物生长发育受到磷素营养的限制较大。  相似文献   

19.
Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137Cs pollution.  相似文献   

20.
It is known that radiation can induce a transmissible persistent destabilization of the genome. We have established an in vitro cellular model using HOS cells to investigate whether genomic instability plays a role in depleted uranium (DU)-induced effects. Transmissible genomic instability, manifested in the progeny of cells exposed to ionizing radiation, has been characterized by de novo chromosomal aberrations, gene mutations, and an enhanced death rate. Cell lethality and micronuclei formation were measured at various times after exposure to DU, Ni, or gamma radiation. Following a prompt, concentration-dependent acute response for both endpoints, there was de novo genomic instability in progeny cells. Delayed reproductive death was observed for many generations (36 days, 30 population doublings) following exposure to DU, Ni, or gamma radiation. While DU stimulated delayed production of micronuclei up to 36 days after exposure, levels in cells exposed to gamma-radiation or Ni returned to normal after 12 days. There was also a persistent increase in micronuclei in all clones isolated from cells that had been exposed to nontoxic concentrations of DU. While clones isolated from gamma-irradiated cells (at doses equitoxic to metal exposure) generally demonstrated an increase in micronuclei, most clonal progeny of Ni-exposed cells did not. These studies demonstrate that DU exposure in vitro results in genomic instability manifested as delayed reproductive death and micronuclei formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号