首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

2.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

3.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

4.
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials.  相似文献   

5.
The pot-culture experiment and field studies were conducted to screen out and identify cadmium (Cd) excluders from 40 Chinese cabbage genotypes for food safety. The results of the pot-culture experiment indicated that the shoot Cd concentrations under three treatments (1.0, 2.5 and 5.0 mg Cd kg−1 Soil) varied significantly (p < 0.05), with average values of 0.70, 3.07 and 5.83 mg kg−1, respectively. The Cd concentrations in 12 cabbage genotypes were lower than 0.50 mg kg−1. The enrichment factors (EFs) and translocation factors (TFs) in 8 cabbage genotypes were lower than 1.0. The field studies further identified Lvxing 70 as a Cd-excluder genotype (CEG), which is suitable to be planted in low Cd-contaminated soils (Cd concentration should be lower than 1.25 mg kg−1) for food safety.  相似文献   

6.
Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils   总被引:1,自引:0,他引:1  
Lin W  Xiao T  Wu Y  Ao Z  Ning Z 《Chemosphere》2012,86(8):837-842
A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China’s Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g1, respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g−1, respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g−1 that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf > stem > root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg−1yr−1 by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively.  相似文献   

7.
The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L−1) and a soil pot trail (control, 60 mg As kg−1). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O2 kg−1 root d.w. d−1), As uptake (e.g., 8.8-151 mg kg−1 in shoots in 0.8 mg As L−1 treatment), translocation factor (2.1-47% in 0.8 mg As L−1) and tolerance (29-106% in 0.8 mg As L−1). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity.  相似文献   

8.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

9.
Yoshitomi B  Nagano I 《Chemosphere》2012,86(9):891-897
Yellowtail (Seriola quinqueradiata) is the most important cultured marine fish in Japan. Dietary fish meal for yellowtail in aquaculture was replaced with 0.0%, 15.4% and 100.0% Antarctic krill meal (KM0, KM15, and KM100) and with 0.0%, 15.4%, and 100.0% low-fluoride krill meal (LFK0, LFK15 and LFK100). The fish was fed to duplicate fish groups for 92 d (KM trial) or 75 d (LFK trial), and fish growth was monitored.Dietary fluoride (F) concentrations (mg kg−1) were 110, 160, and 580 (KM0, KM15, and KM100, respectively) and 98, 120, and 190 (LFK0, LFK15, and LFK100, respectively). The growth during the experimental period, weight gain, feed intake, specific growth rate, and feed efficiency in fish fed the KM100 diet were markedly lower than the other experimental groups, which showed no marked differences in growth performance.After the experiment, dorsal muscle fluoride concentrations in each group were below the detectable limit (1 mg kg−1), but vertebral bone fluoride concentrations increased with increasing proportion of KM to 655 (KM0), 870 (KM15), and 2150 (KM100) mg kg−1. With increasing LFK in the feed, vertebral bone fluoride concentrations (mg kg−1) increased slightly from 500 (LFK0) to 655 (LFK15), and 695 (LFK100). No histopathological changes were detected in the liver tissue in any experimental group.It has been reported that the fluoride bioavailability was reduced with increasing water hardness, however, the dietary fluoride derived from KM exoskeleton accumulates in vertebral bones of marine fish with growth inhibition, as has already been shown for freshwater fish. Vertebral bone fluoride concentrations in two krill-eating Antarctic marine fish in the wild were 33 000 mg kg−1 (Champsocephalus gunnari) and 15 000 mg kg−1 (Notothenia rossii), but they did not show any adverse effect of growth. Therefore, fish bone fluoride accumulation apparently depends on fish species rather than the salinity of the habitat. Consequently, krill exoskeleton must be removed during the processing of Antarctic krill if indeed these krill are to be used as fish feed. However, LFK can completely replace dietary fish meal without apparent adverse effects.  相似文献   

10.
A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg−1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg−1.  相似文献   

11.
Fresh and pasteurized milk samples from Kampala markets were analyzed for organochlorine pesticides using a gas chromatograph equipped with an electron capture detector. Five organochlorine pesticides, namely; aldrin, dieldrin, endosulfan, lindane, DDT and its metabolites were detected in the milk samples and confirmed with a gas chromatograph equipped with a mass spectrometer [GC-MS]. The mean values are expressed in mg kg−1 milk fat (mf) basis. The mean concentration in the fresh milk (= 54) were: 0.026 ± 0.003 mg kg−1 mf; 0.002 ± 0.0003 mg kg−1, below the detection limit; 0.007 ± 0.003 mg kg−1, 0.009 ± 0.002 mg kg−1 milk fat for lindane, endosulfan dieldrin and aldrin, respectively. The mean concentrations of p,p′-DDE; p,p′-DDT and o,p′-DDT were 0.009 ± 0.002 mg kg−1; 0.033 ± 0.007 mg kg−1 and 0.008 ± 0.001 mg kg−1 mf, respectively in the fresh milk samples.In the pasteurized milk samples (= 47), the mean concentrations recorded were: 0.008 ± 0.003 mg kg−1, 0.025 ± 0.004 mg kg−1, and 0.007 ± 0.001 mg kg−1, respectively for p,p′-DDE; p,p′-DDT and o,p′-DDT.Alpha and beta-endosulfan recorded the concentration below the detection limit and the mean of 0.022 ± 0.001 mg kg−1 mf, 0.005 ± 0.002 mg kg−1 mf, and 0.006 ± 0.0002 mg kg−1 mf, respectively for lindane, dieldrin and aldrin. Although, most of the residues detected were above the residue limits set by the FAO/WHO (2008), bioaccumulation of these residues is likely to pose health risks to the consumers of milk in Uganda.  相似文献   

12.
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg−1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg−1) and accumulated biomass (with a mean dry weight of 25.7 g plant−1) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.  相似文献   

13.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

14.
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg−1 and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg−1 Cr and 1000 mg kg−1 Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.  相似文献   

15.
The present study evaluates the tolerance and accumulation potential of Vitis vinifera ssp. sylvestris under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0–23 mmol L−1) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also measured the total copper, nitrogen, phosphorus, sulphur, calcium, magnesium, iron, potassium and sodium concentrations in the plant tissues. All the experimental plants survived even with external Cu concentrations as high as 23 mmol L−1 (1500 mg Cu L−1), although the excess of metal resulted in a biomass reduction of 35%. The effects of Cu on growth were linked to a reduction in net photosynthesis, which may be related to the effect of the high concentration of the metal on photosynthetic electron transport. V. vinifera ssp. sylvestris survived with leaf Cu concentrations as high as 80 mg kg−1 DW and growth parameters were unaffected by leaf tissue concentrations of 35 mg Cu kg−1 DW. The results of our study indicate that plants of V. vinifera ssp. sylvestris from the studied population are more tolerant to Cu than the commercial varieties of grapevine that have been studied in the literature, and could constitute a basis for the genetic improvement of Cu tolerance in grapevine.  相似文献   

16.
There has been recent concern regarding the possibility of antibiotics entering the aquatic food chain and impacting human consumers. This work reports experimental results of the bioconcentration of the antibiotic oxytetracycline (OTC) by the Asian watermeal plant (Wolffia globosa Hartog & Plas) and bioaccumulation of OTC in watermeal and water by the seven-striped carp (Probarbus jullieni). They show, for the first time, the extent to which OTC is able to transfer from water to plant to fish and enter the food chain. The mean bioconcentration factor (dry weight basis) with watermeal was 1.28 × 103 L kg−1. Separate experiments were undertaken to characterize accumulation of OTC by carp from water and watermeal. These showed the latter pathway to be dominant under the conditions employed. The bioconcentration and biomagnification factors for these processes were 1.75 L kg−1 and 2 × 10−4 kg g−1 respectively. Using an aqueous concentration range of 0.34–3.0 μg L−1, hazard quotients for human consumption of contaminated fish of 1.3 × 10−2 to 1.15 × 10−1 were derived.  相似文献   

17.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

18.
Food utilization and growth of the 5th and 6th instar Spodoptera litura Fabricius larvae, and its effect on reproduction potential was evaluated by feeding larvae diets with different doses of Ni for 3 generations. Dose-dependent relationships between Ni levels and food consumption and growth were variable with different larval developmental period and Ni exposure duration. RCR, AD and RGR of the 6th instar larvae were much more affected by Ni exposure than those of 5th instar larvae, and the effects were strongest in the 3rd generation. It was found that RCR was significantly stimulated after 1 and 20 mg kg−1 Ni exposure, while AD was significantly inhibited after 1, 5, 10 and 40 mg kg−1 Ni exposure. However, lower levels of Ni (?5 mg kg−1) significantly increased and higher levels of Ni (?10 mg kg−1) significantly decreased RGR. In 3 successive generations, 10 mg kg−1 Ni significantly increased the ECI and ECD of the 5th instar larvae, and 5 mg kg−1 Ni significantly increased the ECD of the 6th instar larvae. However, ECD were all significantly inhibited with 20 mg kg−1 Ni exposure. Results also revealed that durations of larvae were shortened at low levels of Ni, but extended at high levels of Ni. Fecundity was inhibited by the highest Ni doses in each generation, while improved by low Ni doses in the 3rd generation. Hatching rates in all treatments were significantly decreased in a Ni dose-dependent manner. Study indicated that effects of Ni on these parameters were predominant with the increasing Ni exposure period.  相似文献   

19.
The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L−1) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg−1 dry mass, when treated with 130 mmol Zn L−1. Zinc concentrations greater than 70 mmol L−1 in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg−1 dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.  相似文献   

20.
Enchytraeus crypticus as model species in soil ecotoxicology   总被引:1,自引:0,他引:1  
Enchytraeids are ecologically relevant soil organisms, due to their activity in decomposition and bioturbation in many soil types worldwide. The enchytraeid reproduction test (ERT) guidelines ISO 16387 and OECD 220 are exclusive to the genus Enchytraeus and recommend using the species E. albidus with a 6-week test period. The suggested alternative, E. crypticus has a shorter generation time which may enable the ERT to be twice as fast. To confirm the suitability of a 3-week test period for E. crypticus, the toxicity of five chemicals, with distinct properties and modes of action, was assessed in LUFA 2.2 soil. In all controls the validity criteria were met, as survival of E. crypticus was above 92% and more than 772 juveniles were produced. The good performance supports its appropriateness as model species. Reproduction was more sensitive than survival, with only cadmium and 3,5-dichloroaniline causing significant lethal effects in the tested concentration ranges. The effect concentration causing 50% reduction in the number of juveniles (EC50) was 35 mg kg−1 for cadmium, <1.0 mg kg−1 for carbendazim, 145 mg kg−1 for phenanthrene, 275 mg kg−1 for pentachloroaniline and 102 mg kg−1 for 3,5-dichloroaniline. To evaluate the sensitivity of E. crypticus, the present results were compared to literature data for E. albidus. In conclusion, E. crypticus is a suitable model species in soil ecotoxicology, with advantages such as good control performance and speed, leading to a reliable and faster ERT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号