首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
某工业园区VOCs臭氧生成潜势及优控物种   总被引:2,自引:7,他引:2  
臭氧(O3)污染日趋严重,控制光化学反应前体物之一的挥发性有机污染物(volatile organic compounds,VOCs)对减少臭氧生成有重要意义.为研究天津某工业园区VOCs臭氧生成潜势,采集了园区6个代表企业厂界气体样品,使用质子转移反应飞行时间质谱仪(PTR-TOF-MS)对VOCs进行了定量分析,估算了各企业臭氧生成潜势,运用VOCs/NO_x研究了臭氧生成控制敏感性因素,并在熵值法基础上筛选出了减少臭氧生成优先控制VOCs物种.结果表明,通过PEC法估算臭氧生成F企业最高为0.423 3 mg·m~(-3),MIR法估算结果 C企业最高为1.573 3 mg·m~(-3);PEC法估算结果与臭氧浓度更接近,适用于园区对臭氧生成的估算;VOCs和NOx均为工业园区臭氧生成敏感性因素,需同时控制;园区内VOCs物种臭氧生成贡献大小为烷烃烯炔烃醇类芳香烃,优先控制物种为正庚烷及其同分异构体、正壬烷、正辛烷及其同分异构体、正十一烷、戊烷、正癸烷、甲醇.  相似文献   

2.
唐山夏季大气VOCs污染特征及臭氧生成潜势   总被引:1,自引:2,他引:1       下载免费PDF全文
丁洁然  景长勇 《环境工程》2016,34(6):130-135
在唐山市区对大气环境VOCs进行样品采集,对VOCs污染特征及臭氧生成潜势进行了分析。结果表明:唐山市区VOCs主要以烷烃和芳香烃为主,分别占VOCs总质量浓度的50.3%和30.4%。烷烃和烯烃以丁烷和丙烯等组分为主,芳香烃以苯、甲苯、乙苯和二甲苯为主。由于污染源排放强度、气象条件和光化学反应强弱的影响,VOCs浓度有明显的小时变化特征,8:00—10:00浓度最高,中午较低,且与早上相比,烯烃浓度降低比例中午最大。VOCs臭氧生成潜势敏感性组分以烯烃为主,占总VOCs臭氧生成潜势贡献的49.0%~66.8%,其主要敏感性种类为丙烯。  相似文献   

3.
王红丽 《环境科学学报》2015,35(6):1603-1611
光化学污染导致的高浓度臭氧(O3)是上海面临的重要大气污染问题.本研究分别选取了市区(徐汇)、城郊(青浦)和郊区(南汇)3个典型地区在夏季光化学污染易发季节开展了O3及其前体物挥发性有机物(VOCs)和氮氧化物(NOx)的观测,结合光化学箱模型研究探讨了O3生成的主控污染物.研究表明,不同地区O3污染呈现较强的同步性,日最大浓度也比较接近;但南汇郊区由于受机动车排放影响较小,NOx浓度显著低于其他两个地区,导致该地区O3浓度日变化曲线相对平缓,夜间O3浓度也维持在较高水平.大气VOCs浓度较高时,往往伴随高浓度的O3;3个地区VOCs浓度和组成差异明显,就VOCs浓度而言,徐汇青浦南汇;浓度贡献最主要的物种为甲苯、C2~C3的烷烃和烯烃、丙酮以及辛烷;而C7~C10芳香烃、C3~C4的烯烃、异戊二烯以及乙醛是上海大气臭氧生成潜势贡献最大的VOCs类物质.3个地区O3的生成主要受人为排放的二甲苯类和C3~C4烯烃类物质控制;对于徐汇,只控制NOx会导致O3浓度升高,而南汇郊区O3的生成对NOx排放不敏感.  相似文献   

4.
该文分析了长寿区环境空气中臭氧污染的特征,探讨了气温、湿度、风速等气象条件对环境空气中臭氧浓度的影响,通过绘制EKMA曲线指出臭氧生成的主导因素。文章设置4个挥发性有机物(VOCs)监测点分析了长寿区环境空气中的VOCs含量,结果表明:含氧挥发性有机物以及芳香烃类是长寿区挥发性有机物中的主要成分,分别占总和的32.28%和25.52%,其中芳香烃对臭氧生成的贡献最大。结合PMF模型对VOCs以及臭氧进行了源解析研究,结果表明:工业排放和交通排放是长寿区环境空气中VOCs的主要来源,分别占据VOCs排放总量的56%和18%,对臭氧生成的贡献率分别为46%和25%,在此基础上提出了臭氧污染防治措施。  相似文献   

5.
南京夏季市区VOCs特征及O3生成潜势的相关性分析   总被引:8,自引:10,他引:8  
挥发性有机物(volatile organic compounds,VOCs)是大气中光化学污染臭氧(O3)的重要前体物,其在大气中的浓度水平直接影响着臭氧的污染特征.本研究运用大气挥发性有机物快速在线连续自动监测系统,于2013年8月对南京市区大气中98种VOCs进行观测,分析南京夏季VOCs体积分数水平及组成特征,分析臭氧及其前体物的变化,运用VOCs/NOx比值法研究南京臭氧生成敏感性控制因素.结果表明,夏季南京市区大气VOCs最高体积分数达200×10-9,平均体积分数为52.05×10-9,各物种体积分数大小为烷烃含氧有机物烯烃芳香烃;臭氧平均质量浓度76.5μg·m-3,小时质量浓度超标率为5.9%.臭氧质量浓度高值期,其前体物VOCs与NOx变化趋势基本一致,并与O3变化呈明显的反相关;不同臭氧质量浓度阶段,同种类的VOCs体积分数也存在一定的差异;夏季南京市区的臭氧生成对VOCs较敏感,属于VOCs控制区.  相似文献   

6.
臭氧是城市光化学烟雾的主要成分,同时也是重要的温室气体,因此臭氧污染已经成为城市空气质量的重要因素。利用近几年臭氧连续监测的数据,对臭氧的浓度变化特征进行了分析,并且对臭氧前体物(NOx、NOy、VOCs等)和气象因素作了相关性分析。结果表示臭氧浓度呈典型的季节性变化趋势,并且小时值变化出现明显的日变化规律,与太阳辐射强度成正相关;另外VOCs(挥发性有机物)与臭氧的变化规律基本一致,同时与NOx、NOy的浓度变化趋势存在较好的负相关性。  相似文献   

7.
正近年来我国挥发性有机物(VOCs)排放量仍呈增长趋势,对大气环境影响日益突出。本文提出"十三五"应确立基于质量改善的VOCs污染防治思路,强化臭氧(O_3)污染严重的重点地区VOCs减排,突出抓好O_3生成潜势大的VOCs组分及其排放重点行业的控制,实施VOCs与NOx协同减排,强化VOCs新增排放量控制,针对工业源、交通源、生活源制定差异化的VOCs减排技术路线,同时着力提升VOCs污染防治  相似文献   

8.
利用2016年夏季北仑区域的VOCs及臭氧在线监测结果,研究了北仑区域VOCs的浓度水平、组成及来源情况,同时还分析了区域的臭氧生成与VOCs之间的关系.结果表明:北仑的VOCs浓度整体水平与一些大城市相比较低,在VOCs组成中比例最高的为烷烃,臭氧生成潜势(OFP)贡献最高的为芳香烃;北仑的VOCs来源与北京和上海均有所不同,且北仑的机动车对VOCs的贡献特征值B/T为0.56,超过了临界值;北仑区域的臭氧生成主要是由本地的VOCs等的臭氧前驱体通过光化学反应生成.  相似文献   

9.
中国知网数据库中关于“臭氧污染”文献综述表明,我国城市臭氧污染整体形势较为严峻,且区域化特征明显。以京津冀及周边区域、长三角区域和珠三角区域的城市群为代表的北部、东部地区臭氧污染较为严重。中西部地区城市的臭氧污染状况整体较轻,但是部分地区和城市受地形和气象条件的影响,也出现过严重的臭氧污染。因此,不断完善臭氧监测体系,针对性加强臭氧前体物NOx和VOCs的协同控制,建立科学、合理、完善的臭氧治理体系是十分必要的。  相似文献   

10.
广州市冬季一次典型臭氧污染过程分析   总被引:1,自引:1,他引:0  
裴成磊  谢雨彤  陈希  张涛  邱晓暖  王瑜  王在华  李梅 《环境科学》2022,43(10):4305-4315
为探究广州市2020年冬季(1月)一次臭氧污染过程,分析了气象条件对臭氧污染产生的影响;运用臭氧生成潜势(OFP)和正交矩阵因子分解法(PMF)分析了影响臭氧的主要挥发性有机物(VOCs)物种和来源;通过经验动力学建模方法(EKMA)识别了臭氧生成控制区,并提出了相应的前体物减排策略.结果表明,本次臭氧污染过程中同时出现了NO2超标,并且PM10和PM2.5浓度也处于高位,体现出和夏、秋季不同的大气复合污染特征;夜间边界层高度低(<75 m)和大气稳定度高加剧了臭氧前体物和颗粒物的累积,日间温度升高约5℃、太阳辐射增强约10%和水平风速小(<1 m ·s-1)等气象条件加剧了光化学反应,促进了臭氧和颗粒物的生成.冬季VOCs组分以烷烃为主(占比为68.2%),且烷烃和炔烃占比较其他季节更高,但芳香烃(二甲苯和甲苯)和丙烯是臭氧生成的关键VOCs物种;源解析结果显示,VOCs的主要来源为汽车尾气(22.4%)、溶剂使用(20.5%)和工业排放(17.9%),其中溶剂使用的OFP最高;臭氧本地生成主要受VOCs控制,前体物VOCs和NOx按比例3 :1进行削减较为合理.研究探索了冬季臭氧污染的成因,为开展重污染季节O3和PM2.5协同控制提供科学支撑.  相似文献   

11.
秋季是广东省臭氧污染最严重的季节,利用三维空气质量模型对粤东北城市梅州空气污染进行模拟与评估,综合运用多种手段深入研究臭氧污染过程与臭氧生成敏感性及定量臭氧的来源。在偏东北气流的作用下,尽管风速较大,但因日照较强,臭氧生成旺盛,污染比较严重。梅州秋季臭氧大部分为背景浓度,午后约达60%,本地排放贡献10%,午后最高约10μg/m~3,外地排放贡献30%,江西与福建两省午后最高约23与11μg/m~3,广东省其它城市的贡献率不足1μg/m~3。按排放源分类,对梅州市秋季臭氧浓度贡献最大为火电、工业高架源与飞机排放,午后臭氧贡献达17~20μg/m~3。秋季,梅州市区臭氧生成敏感性历经早上的NOx敏感区到中午的VOCs敏感区,最后为傍晚的NO_x敏感区阶段。全天平均而言,秋季臭氧主要是在VOCs敏感区内生成。要控制粤东北的臭氧污染,在秋季要重点控制北面省市的火电、工业高架源等,同时加强对VOCs的控制。  相似文献   

12.
本文探讨了中国地区在高气溶胶污染下臭氧形成的问题。过去对臭氧污染的讨论主要集中在臭氧前提物(NOx,CO和VOCs)的讨论。并根据其各自的排放量研究臭氧形成在本地区是由NOx还是VOCs控制的。然而,在中国高气溶胶频发的条件下,太阳辐射被强烈压抑,极大减少了臭氧形成的光化学过程。因此本文建议,除去臭氧形成的NOx及VOCs控制条件,还应有一个太阳光子控制条件。而中国由于高气溶胶污染,目前臭氧的形成应是受太阳光子控制条件的影响。因此压抑了臭氧的形成。然而,随着气溶胶污染的治理和改善,光化学活动的增强,臭氧污染会成为中国将来的严重问题,应加以重视。  相似文献   

13.
钱骏  徐晨曦  陈军辉  姜涛  韩丽  王成辉  李英杰  王波  刘政 《环境科学》2021,42(12):5736-5746
2020年4月24日至5月6日成都市臭氧(O3)和细颗粒物(PM2.5)复合污染过程期间,在成都市城区开展大气臭氧及其前体物(NO,、VOCs)和气象参数观测实验,基于观测数据采用OBM模型对市区臭氧敏感性和主控因子进行识别,并采用PMF模型对关键VOCs物种进行来源解析.结果表明,臭氧超标日各污染物浓度均有所上升,VOCs物种中芳香烃和含氧(氮)化合物上升幅度较大;成都市城区O3超标天对应的臭氧处于显著VOCs控制区,芳香烃和烯烃对O3生成最为敏感,且存在削减NOx的不利效应;结合VOCs来源解析,城区VOCs主要来源:移动源(22.4%)、餐饮及生物质燃烧源(21.8%)、工业源(15.1%)和溶剂使用源(9.3%),臭氧超标天溶剂使用源、餐饮及生物质类燃烧源贡献率明显上升.成都市城区春季应以VOCs减排为重点,并加大芳香烃和烯烃相关源控制力度.  相似文献   

14.
基于2014年10月的气象场与排放源数据,使用三维空气质量模型,通过设置40种不同的区域NOx与VOCs减排情景,模拟了不同减排情景下珠海不同点位的臭氧浓度变化。总体而言,珠海市不同点位的臭氧与区域前体物减排的关系存在一定差别,表明珠海臭氧污染是区域性问题,但不同点位的臭氧对前体物排放的敏感性存在差别,东面的站点需要更大的削减量才能达到与西部站点相同的臭氧浓度下降率。VOCs∶NOx削减比率越大,珠海市臭氧浓度越容易下降。因此,要控制珠海的臭氧污染,应加大对珠三角区域VOCs的控制。  相似文献   

15.
利用湖北省超级站2019年10~11月的臭氧、NOx(=NO+NO2)和102种VOCs物质的小时数据分析了军运会期间臭氧污染变化;基于DSMACC箱型模式模拟不同VOCs和NOx浓度下臭氧的光化学生成敏感性;采用PMF模型对前体物VOCs进行源解析,并估算不同源类的臭氧生成潜势.结果显示,军运会保障前臭氧日最大8小时浓度(最大MDA8:219.51μg/m3)超过国家二级标准,保障期臭氧MDA8浓度(135.11μg/m3)明显下降,保障后浓度回升(140.98μg/m3).军运会保障前中期臭氧浓度的差异受气象条件影响更明显,而保障后臭氧浓度的上升主要是因为前体物浓度的大幅增加.根据DSMACC模拟的EKMA曲线,武汉市军运会期间臭氧的光化学生成主要受VOCs浓度变化的影响.进一步对VOCs进行源解析,结果显示,保障前VOCs对臭氧生成贡献较大的源类是燃烧源、石油化工和机动车,分别占23.0%、22.8%和22.5%;保障期间VOCs的主要来源是机动车(38.4%)和燃烧源(25.5%);保障后则主要是石油化工(32.6%)和燃料挥发(25.7%).三个阶段对比发现,军运会的保障方案对石油化工源减排效果明显,但对机动车和燃烧源排放的限制效果并不显著.武汉市应该更注重对燃烧、燃料挥发和机动车排放的治理.  相似文献   

16.
选取梅州为粤东北地区代表城市,使用高阶去耦合直接法(High-order Decoupled Direct Method,HDDM)开展臭氧与前体物关系研究。一阶敏感性系数表明,在夏季,减少省外VOCs或NOx排放对梅州的臭氧污染控制都有利,梅州本地VOC排放的减少有利于降低臭氧浓度,但NOx的减排反而会加重臭氧污染水平,而省内其它城市排放的变化在大部分时候对梅州影响轻微。秋季,梅州本地的排放对梅州的臭氧影响最大,其次是外省的排放,广东省其它城市的影响轻微,减少省外或梅州市本地VOCs排放对梅州的臭氧污染控制都有利,省外NOx排放的减少在个别时候有利于降低臭氧浓度,个别时候会加重梅州臭氧污染,但梅州本地NOx的减排会加重臭氧污染水平。考虑二阶敏感性系数的臭氧与前体物排放变化曲线表明,粤东北地区的臭氧与外省前体物的排放或广东省其它城市前体物的排放呈现出高度的非线性关系。而梅州本地臭氧前体物的排放变化与臭氧浓度变化的关系较为线性。建议粤东北地区尽可能减少本地排放的VOCs以减轻臭氧的污染水平。  相似文献   

17.
为了探究真实的半封闭环境下汽车尾气污染物的分布特征以及它们对臭氧和二次颗粒物的影响,本文对贵阳市黔灵山隧道的汽车尾气污染物进行了综合监测和采样,得到了隧道进出口的NOx、SO2、O3、VOCs、颗粒物分粒径的质量浓度,VOCs的成分谱以及PM2.5的离子组分.监测结果表明隧道内高浓度的NOx对臭氧会产生滴定效应,颗粒物...  相似文献   

18.
挥发性有机物(VOCs)已经与氮氧化物(NOx)、颗粒物等成为我国典型城市群的主要大气污染物,其中工业源VOCs排放量大,是珠江三角洲地区影响最大的一类VOCs排放源。由于VOCs种类繁多,来源及转化生成臭氧的机制复杂,为解决此类复杂的VOCs污染问题,文章以东莞市作为珠三角典型区域代表,归纳总结了VOCs防控措施,分析了工业源VOCs治理的难点,有针对性地提出相关的有效对策建议,以期为大气环境质量管理和决策提供有益帮助,也为全国其他城市的VOCs污染防控提供借鉴。  相似文献   

19.
大气中的挥发性有机物(volatile organic compounds,VOCs)作为对流层臭氧和二次有机气溶胶的前体物,在光化学反应和细颗粒物污染中发挥着重要的作用.本研究于2017年9月1~27日在上甸子区域背景站开展VOCs的连续在线观测,对VOCs的浓度水平,时空变化特征,化学反应活性及其对臭氧生成的贡献进行了研究,并运用特征物种比值法对初始VOCs的来源进行了分析.结果表明, 2017年9月上甸子站总VOCs平均体积分数为12.53×10~(-9),其中,烷烃是体积分数最大的组分,占到了总VOCs的65.3%,其次是烯烃和芳香烃,分别占到了总VOCs的26.7%和6.5%.从大气化学活性来看,上甸子站总的L~(·OH)(·OH损耗率)为5.2 s~(-1),其中C4~C5烯烃占到了61%,其次是C2~C3烯烃,占到了12.8%.VOCs的臭氧生成潜势平均值为36.5×10~(-9),烯烃是贡献最大的组分,占到了71.2%.烯烃中又以C4~C5烯烃的贡献最为突出,而体积分数较大的烷烃对臭氧生成的贡献却不大.对特征物种的比值研究发现,上甸子站VOCs受生物质燃烧和燃煤排放的影响较大,除此之外,交通排放源也有一定的影响,完全不受工业排放源的影响.  相似文献   

20.
典型工业无组织源VOCs排放特征   总被引:15,自引:0,他引:15  
选取制药厂、酿酒厂和橡胶厂分析了不同工艺过程VOCs排放特征.结果表明,制药厂安乃近合成和氨基比林合成的VOCs排放以苯、甲苯和苯乙烯等苯系物为主,乙酰氨基酚合成的VOCs排放主要以C4~C6的烷烃为主,酿酒厂和橡胶厂VOCs排放均以甲苯、乙苯和间,对二甲苯为主.采用最大增量反应活性法对臭氧生成潜势进行分析,制药厂安乃近合成和氨基比林合成VOCs单位臭氧生成潜势以苯、甲苯等苯系物为主;乙酰氨基酚合成以顺-2-丁烯、甲苯和异戊烷为主;酿酒厂、橡胶厂以甲苯、乙苯、间,对二甲苯为主.同时采用阈稀释倍数对VOCs进行恶臭分析,制药厂和酒厂无组织排放VOCs恶臭污染程度较轻,橡胶厂的伸缩装置车间和硫化车间的无组织VOCs排放存在一定程度的恶臭污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号