首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
将再生混凝土骨料以不同比例取代钢渣骨料配制透水混凝土,采用沸煮试验法考察废混凝土骨料对钢渣透水混凝土强度和体积稳定性的影响,结果表明:再生混凝土骨料可改善钢渣透水混凝土强度,减轻钢渣骨料膨胀对透水混凝土体积稳定性的影响,用再生混凝土骨料在改善钢渣骨料透水混凝土性能同时可消纳两种固体废弃物,具有环境效益和社会效益。  相似文献   

2.
采用4种不同成型方式分别制作再生骨料透水混凝土和天然骨料透水混凝土,研究其强度和透水性能的变化规律。试验结果表明:手工振捣+平板振动成型方式制作的透水混凝土,具有较高的强度与优良的透水性能,为最佳的成型方式;同配比时,再生骨料透水混凝土较天然骨料混凝土强度更高,透水性能也较好。  相似文献   

3.
随着我国城市化进程加快,城市内涝、水资源短缺、建筑垃圾露天堆放等问题严重影响我国的可持续发展。在国家大力倡导海绵城市建设及资源循环利用的契机下,选取通州区某地拆迁建筑垃圾进行成分分析及性能研究,加工成再生骨料,研究制备出透水性能好、符合国家标准的再生骨料透水砖。将再生骨料透水砖应用于某小区海绵化改造项目,与雨水花园、植草沟等其他低影响开发设施完美结合,达到了削减雨水径流、促进资源循环利用等一系列目标,实现了海绵城市设计、建设目标及区域内部的资源循环利用,具有良好的经济效益、社会效益和生态效益。  相似文献   

4.
为了再生利用高碳铬铁合金渣,在检测高碳铬铁合金渣浸出毒性及作为混凝土骨料可行性的基础上,将其作为骨料替代天然石用于透水混凝土的制作。试验结果表明:高碳铬铁合金渣的性能满足混凝土用骨料要求,高碳铬铁合金渣作为骨料时的性能优于天然石作为骨料时的性能,水灰比为0.42,胶骨比为0.28时,配制的透水混凝土可达到相关规范规定的C20混凝土的要求,连通孔隙率可达18%。  相似文献   

5.
为了再利用建筑垃圾,节约天然骨料资源,试验骨料全部采用废混凝土,研究水灰比、胶骨比及减水剂对废混凝土再生骨料透水混凝土性能的影响。结果表明:在胶骨比不变时,水灰比增加,抗压强度增加、孔隙率降低;在水灰比不变时,胶骨比增加,抗压强度增加、孔隙率降低;减水剂可以改善拌合物的和易性,从而提高抗压强度,降低孔隙率,但加入量不宜过大;用全废混凝土完全可配制出符合规范要求的透水混凝土。  相似文献   

6.
绿色混凝土是符合"可持续发展"的新型环保材料,有很高的强度、耐久性、植生性及环境协调性。是我国建设节约型社会及环保型社会发展道路方针的具体体现。通过矿物掺合料、再生骨料、透水、绿化混凝土实现混凝土的耐久和环保利用,旨在提高资源的利用率,保护环境,实现资源的可持续发展。  相似文献   

7.
建筑业在促进经济发展的同时,大量的砂石资源消耗和建筑废弃物占地也对环境造成了巨大压力。因此,建筑和拆除废物的再生骨料回收利用成为必然趋势,诸多学者在先前的研究中分析了再生骨料在实际工程中运用的可行性。综述了利用建筑固废生产再生骨料存在的问题,并总结分析了目前改善再生骨料性能应用较多的处理方法,得出结论,使用加速碳化处理,结合不同的微生物处理方式改善再生骨料性能,具有经济、环保、可持续的特点,有可能成为未来应用于再生骨料生产过程中更为优越、环保的方法。  相似文献   

8.
系统研究了废弃混凝土经破碎、分级、清洗后得到的再生骨料的基本性质,揭示了再生骨料较天然花岗岩骨料密度小、空隙率大、吸水率和吸水速率大及压碎指标大等特点.同时还讨论了再生骨料对新拌混凝土和易性和抗压强度的影响规律,再生骨料将使新拌混凝土的流动性降低,但粘聚性和保水性较好,使硬化混凝土的抗压强度略有降低.  相似文献   

9.
通过试验研究再生骨料混凝土中粉煤灰和再生骨料对混凝土强度的影响。采用粉煤灰替代部分水泥、再生骨料替代部分天然粗骨料的方法,通过正交试验测定混凝土立方体抗压强度的方法,来研究粉煤灰对再生骨料混凝土强度的影响。试验得出:当再生骨料掺量为20%~30%时,粉煤灰的最佳掺量为20%左右;当再生骨料掺量高于40%、粉煤灰掺量高于20%时,其混凝土拌合物搅拌时间不小于240 s,且当粉煤灰在20%~30%时,可获得较理想的混凝土抗压强度;当粉煤灰的掺入量分布在20%~30%、再生骨料的最佳掺量为50%时,可获得较理想的混凝土抗压强度。由此得出,合理的再生骨料、粉煤灰掺量对混凝土的抗压强度影响并不明显且有提高的趋势,对降低混凝土成本,提高建筑垃圾的再生利用,有一定的经济效益和社会效益。  相似文献   

10.
随着我国经济和城市建设的迅速发展,建筑垃圾问题营运而生。重新利用建筑垃圾再生骨料变得尤为必要。通过试验研究,对建筑垃圾再生粗骨料和再生细骨料进行基本性能的测试分析。试验结果表明:单粒级SRA和连续粒级LSRA均满足再生粗骨料的颗粒级配规定,LRA则不能较好地满足颗粒级配规定。两种单粒级再生粗骨料SRA,LRA和连续粒级LSRA在含水率、吸水率、压碎指标、针片状颗粒含量、表观密度、堆积密度和空隙率基本性能上,均能较好满足《混凝土用再生粗骨料》(GB/T 25177—2010)相关规定;而再生细骨料颗粒性质、物理性质和力学性质差,不能较好满足《混凝土和砂浆用再生细骨料》(GB/T 25176—2010)相关规定。  相似文献   

11.
将废粘土砖加工成粗细骨料,用于配制全废砖再生轻骨料混凝土.检测结果表明:所用废砖粗细骨料属轻骨料范畴,但其吸水率较大,且细骨料级配不良.试验表明:本试验配合比体系中,净水灰比为0.42,体积砂率为50%时最佳;以全废砖配制的再生砖轻骨料混凝土的强度发展规律与普通轻骨料混凝土类似,均有随水泥用量提高而强度提高的趋势,但随着所配制的混凝土强度等级的提高,再生轻骨料混凝土的强度提高趋势下降.以全废砖为骨料适合配制强度等级LC30及以下的再生轻骨料混凝土.  相似文献   

12.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

13.
Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study.  相似文献   

14.
This paper presents the results of experimental research using concrete produced by substituting part of the natural coarse aggregates with recycled aggregates from concrete demolition. The influence of the quality of the recycled aggregate (amount of declassified and source of aggregate), the percentage of replacement on the targeted quality of the concrete to be produced (strength and workability) has been evaluated. The granular structure of concrete and replacement criteria were analyzed in this study, factors which have not been analyzed in other studies. The following properties of recycled concretes were analyzed: density, absorption, compressive strength, elastic modulus, amount of occluded air, penetration of water under pressure and splitting tensile strength.A simplified test program was designed to control the costs of the testing while still producing sufficient data to develop reliable conclusions in order to make the number of tests viable whilst guaranteeing the reliability of the conclusions.Several factors were analyzed including the type of aggregate, the percentage of replacement, the type of sieve curve, the declassified content, the strength of concrete and workability of concrete and the replacement criteria. The type of aggregate and the percentage of replacement were the only factors that showed a clear influence on most of the properties.Compressive strength is clearly affected by the quality of recycled aggregates. If the water–cement ratio is kept constant and the loss of workability due to the effect of using recycled aggregate is compensated for with additives, the percentage of replacement of the recycled aggregate will not affect the compressive strength.The elastic modulus is affected by the percentage of replacement. If the percentage of replacement does not exceed 50%, the elastic modulus will only change slightly.  相似文献   

15.
In this study, according to two kinds of test methods, the waste official test (WOT) method and the soil contamination official test (SCOT) method applied to domestic harmful substance analysis by Korean regulation, ten kinds of harmful substance values for two kinds of natural aggregates (crushed stone and sea sand) and three kinds of recycled aggregates (road use aggregate, coarse aggregate and fine aggregate) were analyzed, as well as their alkalinity levels. Through this analysis, it was found that recycled aggregates had a higher harmful substance value than natural aggregates, but were still within the standard values and were safe. The pH levels of natural aggregates and recycled aggregates were measured by grinding the specimens according to the testing methods, and the results indicated that the natural aggregate was below pH 9, while the recycled aggregates were found to have a strong alkalinity of pH 11. The pH measurement of recycled aggregates according to grain size and eluting time indicated that a small grain size yielded an initially high pH value that changed little over eluting time, while aggregates with a large grain size had a relatively low initial pH value, but increased with eluting time. In addition, the pH of recycled aggregates was higher for smaller grain sizes, and the WOT method yielded higher pH levels than the SCOT method.  相似文献   

16.
Journal of Material Cycles and Waste Management - The depletion of natural aggregate sources has increased exponentially due to the enormous demand for concrete. Therefore, the recycled aggregate...  相似文献   

17.
In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW–25% EVA and 50% CDW–50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties.  相似文献   

18.
The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号