首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract: This paper presents a numerical investigation of approaches to enhance the mixing and dispersion processes in tidal areas by effecting changes in the natural estuary system. It compares the impact of various estuary modifications stemming from human intervention to pollutant dispersion and chaotic flow within the estuary including the implications of alteration of the original channel shape, change of the channel bathymetry, and modification of the tidal signal. Our findings indicate that chaotic flow analysis is similar in many regards, but not all, to conventional dispersion analysis. Specifically, we conclude that (1) simplification of the flow regime reduces chaotic flow patterns and tracer particle dispersion, (2) creation of extensively protruding barriers and/or installation of barriers on opposite sides of the main stem of the estuary enhances particle dispersion and chaotic mixing, (3) installation of underwater berms has relatively minor beneficial, but highly localized, effects on chaotic regime and particle dispersion, and (4) increasing the tidal signal amplitude was shown to increase chaotic and dispersion properties of the estuarine system. A parametric study investigating the effect of several geometrical configurations and tidal signals on characteristics of chaotic flows concludes the paper.  相似文献   

2.
The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.  相似文献   

3.
ABSTRACT: This paper describes the verification of the QUAL-1 mass transport model for the lower Mississippi River between St. Francisville and Point a la Hache using dye studies conducted by the U. S. Geological Survey. QUAL-1 is a one-dimensional steady-state model for rivers and is capable of predicting longitudinal profiles of soluble materials entering rivers from point sources. Both conservative and nonconservative parameters of water quality can be considered. The major problems surmounted were the determination of a diffusion coefficient and the use of transient data to verify a steady state model.  相似文献   

4.
ABSTRACT: The effect of unsteadiness of dam releases on velocity and longitudinal dispersion of flow was evaluated by injecting a fluorescent dye into the Colorado River below Glen Canyon Dam and sampling for dye concentration at selected sites downstream. Measurements of a 26-kilometer reach of Glen Canyon, just below Glen Canyon Dam, were made at nearly steady dam releases of 139, 425, and 651 cubic meters per second. Measurements of a 380-kilometer reach of Grand Canyon were made at steady releases of 425 cubic meters per second and at unsteady releases with a daily mean of about 425 cubic meters per second. In Glen Canyon, average flow velocity through the study reach increased directly with discharge, but dispersion was greatest at the lowest of the three flows measured. In Grand Canyon, average flow velocity varied slightly from subreach to subreach at both steady and unsteady flow but was not significantly different at steady and unsteady flow over the entire study reach. Also, longitudinal dispersion was not significantly different during steady and unsteady flow. Long tails on the time-concentration curves at a site, characteristic of most rivers but not predicted by the one-dimensional theory, were not found in this study. Absence of tails on the curves shows that, at the measured flows, the eddies that are characteristic of the Grand Canyon reach do not trap water for a significant length of time. Data from the measurements were used to calibrate a one-dimensional flow model and a solute-transport model. The combined set of calibrated flow and solute-transport models was then used to predict velocity and dispersion at potential dam-release patterns.  相似文献   

5.
ABSTRACT: The non-Fickian nature of the longitudinal dispersion in natural channels during low flow has been investigated using both laboratory experiments and the numerical solution of the proposed mathematical model which is based on a set of mass balance equations describing the dispersion and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted to obtain sets of experimental data on a model of four pool and riffle sequences in a 161-ft long tilting flume in the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. The experimental results indicate that flow over the model pool-riffle sequences is highly nonuniform. Concentration-time curves are significantly skewed with long tails. The mixing and dispersion in the laboratory channel was simulated using a numerical solution of the mathematical model in which the finite difference method developed by Stone and Brian (1963) was used as a solution technique. The comparison between measured and predicted concentration-time curves shows that there is a good level of agreement in the general shape, peak concentration, and time to peak. The proposed model shows significant improvement over the conventional Fickian model in predicting dispersion processes in natural channels under low flow conditions.  相似文献   

6.
ABSTRACT: Rhodamine WT dye‐tracer injections in rivers of the Willamette Basin yield concentration‐time curves with characteristically long recession times suggestive of active transient storage processes. The scale of drainage areas contributing to the stream reaches studied in the Willamette Basin ranges from 10 to 12,000 km2. A transient storage assessment of the tracer studies has been completed using the U.S. Geological Survey's One‐dimensional Transport with Inflow and Storage (OTIS) model, which incorporates storage exchange and decay functions along with the traditional dispersion and advection transport equation. The analysis estimates solute transport of the dye. It identifies first‐order decay coefficients to be on the order of 10?5/sec for the nonconservative Rhodamine W.T. On an individual subreach basis, the first‐order decay is slower (typically by an order of magnitude) than the transient storage process, indicating that nonconservative tracers may be used to evaluate transient storage in rivers. In the transient storage analysis, a dimensionless parameter (As/A) expresses the spatial extent of storage zone area relative to stream cross section. In certain reaches of Willamette Basin pool‐and‐riffle, gravel‐bed rivers, this parameter was as large as 0.5. A measure of the storage exchange flux was calculated for each stream subreach in the simulation analysis. This storage exchange is shown subjectively to be higher at higher stream discharges. Hyporheic linkage between streams and subsurface flows is the probable physical mechanism contributing to a significant part of this inferred active transient storage. Hyporheic linkages are further suggested by detailed measurements of river discharge with an Acoustic Doppler Current Profiler system delineating zones in two large rivers where water alternately enters and leaves the surface channels through gravel‐and‐cobble riverbeds. Measurements show patterns of hyporheic exchange that are highly variable in time and space.  相似文献   

7.
ABSTRACT: The town of Jamestown, Rhode Island, located on Conanicut Island in Narragansett Bay, is constructing a secondary treatment plant in order to comply with NPDES regulations. Twelve candidate sites for the plant and marine outfall were initially proposed, and ability to meet State water quality standards at these sites was evaluated using an EPA buoyant plume model. A final outfall site, Taylor Point, was selected by the Town from among the sites considered acceptable. Taylor Point was then subjected to field hydrographic studies including drogue tracking, current recordings, and tracer dye surveys. Results of the measurement program served as input to a two-dimensional effluent dispersion model which predicted excess BOD, coliform, and suspended solids resulting from effluent discharge off Taylor Point. The model predictions demonstrated that State water quality standards can be maintained outside the initial discharge plume.  相似文献   

8.
Conservative solute tracer experiments were conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania, USA. Estimated flow rates were between 46 Ls(-1) and 81 Ls(-1), average stream width was 5.5m and average stream depth was 0.2m. Given these dimensions, most researchers would think it reasonable to assume that the stream is completely mixed vertically and horizontally. However, we found that the stream was not vertically completely mixed in a 1.0m deep, 30 m long pool. The limited mixing was demonstrated by the vertical stratification of a tracer cloud which was completely mixed both laterally and vertically across the stream prior to entering the pool. We suggest that the cause of limited mixing is due to a balance between groundwater inflow and transverse dispersion at the cross-section. We show that the unsupported assumption of complete mixing may result in a wide range, and thus increased uncertainty, of the values of stream flow and longitudinal dispersion coefficient estimated from these data. We conclude that the assumption of complete mixing and one-dimensional modeling must be checked against actual field conditions, even in small streams.  相似文献   

9.
扩散参数是影响物质在水中迁移的一个比较重要的参数,本论文通过自己设计的扩散装置,采用^87Sr(NO3)2作为示踪剂研究了锶元素在水环境中的扩散参数,同时还从理论计算上对试验结果进行了验证。  相似文献   

10.
Larned, Scott T., David B. Arscott, Jochen Schmidt, and Jan C. Diettrich, 2010. A Framework for Analyzing Longitudinal and Temporal Variation in River Flow and Developing Flow-Ecology Relationships. Journal of the American Water Resources Association (JAWRA) 46(3):541-553. DOI: 10.1111/j.1752-1688.2010.00433.x Abstract: We propose a framework for analyzing longitudinal flow variation and exploring its ecological consequences in four steps: (1) generating longitudinally continuous flow estimates; (2) computing indices that describe site-specific and longitudinal flow variation, including intermittence; (3) quantifying and visualizing longitudinal dynamics; (4) developing quantitative relationships between hydrological indices and ecological variables (flow-ecology relationships). We give examples of each step, using data from a New Zealand river and an empirical longitudinal flow model, ELFMOD. ELFMOD uses spot-gauging data and flow or proxy variable time series to estimate flow magnitude and state (flowing or dry) at user-defined intervals along river sections. Analyses of flow-ecology relationships for the New Zealand river indicated that fish and benthic and hyporheic invertebrate communities responded strongly to variation in mean annual flow permanence, flow duration, dry duration, drying frequency, inter-flood duration, and distances to flowing reaches. To put longitudinal flow variation into a broader context and guide future research, we propose a conceptual model that combines elements of two contrasting perspectives: rivers as longitudinal continua, and rivers as patch mosaics. In this conceptual model, hydrologically complex rivers are composed of linear sequences of nested hydrological gradients, which are bordered by hydrogeomorphic discontinuities, and which collectively generate hydrological dynamics at river-section scales.  相似文献   

11.
12.
ABSTRACT: The U.S. Geological Survey has performed hundreds of time-of-travel and tracer dispersion studies in streams and estuaries nationwide. This paper presents an approach to unitizing this type of data to make it more universally usable in predicting the behavior of soluble contaminants entering waterways. Practical application of the superposition principle and of the scalene triangle as an approximation of the response curve from a slug injection of a solute are demonstrated to be a means of simulating the downstream effects of any form of soluble contaminant release.  相似文献   

13.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

14.
ABSTRACT: To better understand the flow processes, solute-trans. port processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) ground-water recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.  相似文献   

15.
近年来,工业的快速发展导致我国环境污染不断加剧.大气环境污染是影响面最广,对人群的损害也是最直接和不可避免的污染类型.以湘潭县某新建炼锌厂工程项目为例,根据该项目区的气象环境概况,依据环评导则选取对应的大气扩散模式及恰当的有关参数,预测分析工程运营后污染源薰烟小时地面的贡献浓度,并利用预测结果分析了在熏烟情况下各污染物异常排污时,氨气对2000m处居民有严重影响,粉尘、SO2、烟尘主要表现在对工业区周围100m的影响,可见对工业区的大气环境影响预测与评价的研究具有积极的理论意义和现实意义.  相似文献   

16.
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield.  相似文献   

17.
ABSTRACT: A procedure using a simple, empirically‐based model that makes efficient use of available information has been developed for designing a ground water monitoring well network. A moving plume is described by siting wells in a sequential manner, relying upon two‐dimensional concentration data obtained from previously installed wells to determine the locations of future wells. Data sets from two well known, densely monitored natural gradient tracer studies were used to test the procedure. Plumes defined by all information in the original networks were compared to those defined by reduced networks designed by the new procedure. The new procedure tracked the plumes using only a portion of that information. The new procedure could have reduced the number of wells in the original tests by about 50 percent without appreciable loss of plume information as measured by plume location and extent and by tracer mass.  相似文献   

18.
ABSTRACT: Comparisons were made between rates of movement of orthophosphate in a canal and a meandering stream. The meander system had greater algal and macrophyte phosphate uptake rates, and lower plankton and sediment release rates compared to the canal. Chemical precipitation and direct rainfall influences on orthophosphate movement were insignificant relative to other terms. The major source of phosphorus to both systems was from upland runoff. The impact of this source was greater on the meandering system due to the smaller channel volume. When secondary effects of meandering were considered such as marsh inundation, the net orthophosphate movement within the meandering channel was less than that for the canal; due to the lower concentrations of phosphorus in marsh effluent waters. Field experiments were conducted to compare the longitudinal dispersion coefficient between a canal and meandering river system; the meandering stream had a dispersion coefficient over 17 times that measured for the canal. Rates of orthophosphate movement were combined into a single mass transport equation, and a numerical solution was obtained. Internal river and canal channel processes were overshadowed by external point source loadings.  相似文献   

19.
Stream temperature is one of the most important environmental variables in lotic habitats as it has important and direct impacts on the ecosystem. Given the continuous nature of this variable, the aim of this paper was to introduce functional regression for the air‐stream temperature relation, being capable to model an entire seasonal or annual curve of temperatures as one entity, rather than multiple daily or weekly values in classical models. Three types of functional models were explored in the study and compared to two classical models (Generalized Additive Model and Logistic Model) for six rivers from the United States The results show the functional models have the best performance for all the considered rivers. When comparing functional models between them, one variant of the historical functional model performs better than the two other models and is the most parsimonious. Functional regression leads to encouraging results to model the complete annual stream temperature curve as one entity compared to other classical approaches.  相似文献   

20.
ABSTRACT: River Environment Classification (REC) is a new system for classifying river environments that is based on climate, topography, geology, and land cover factors that control spatial patterns in river ecosystems. REC builds on existing principles for environmental regionalization and introduces three specific additions to the “ecoregion” approach. First, the REC assumes that ecological patterns are dependent on a range of factors and associated landscape scale processes, some of which may show significant variation within an ecoregion. REC arranges the controlling factors in a hierarchy with each level defining the cause of ecological variation at a given characteristic scale. Second, REC assumes that ecological characteristics of rivers are responses to fluvial (i.e., hydrological and hydraulic) processes. Thus, REC uses a network of channels and associated watersheds to classify specific sections of river. When mapped, REC has the form of a linear mosaic in which classes change in the downstream direction as the integrated characteristics of the watershed change, producing longitudinal spatial patterns that are typical of river ecosystems. Third, REC assigns individual river sections to a class independently and objectively according to criteria that result in a geographically independent framework in which classes may show wide geographic dispersion rather than the geographically dependent schemes that result from the ecoregion approach. REC has been developed to provide a multiscale spatial framework for river management and has been used to map the rivers of New Zealand at a 1:50,000 mapping scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号