共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eugene Z. Stakhiv 《Journal of the American Water Resources Association》2011,47(6):1183-1196
Stakhiv, Eugene Z., 2011. Pragmatic Approaches for Water Management Under Climate Change Uncertainty. Journal of the American Water Resources Association (JAWRA) 47(6):1183–1196. DOI: 10.1111/j.1752‐1688.2011.00589.x Abstract: Water resources management is in a difficult transition phase, trying to accommodate large uncertainties associated with climate change while struggling to implement a difficult set of principles and institutional changes associated with integrated water resources management. Water management is the principal medium through which projected impacts of global warming will be felt and ameliorated. Many standard hydrological practices, based on assumptions of a stationary climate, can be extended to accommodate numerous aspects of climate uncertainty. Classical engineering risk and reliability strategies developed by the water management profession to cope with contemporary climate uncertainties can also be effectively employed during this transition period, while a new family of hydrological tools and better climate change models are developed. An expansion of the concept of “robust decision making,” coupled with existing analytical tools and techniques, is the basis for a new approach advocated for planning and designing water resources infrastructure under climate uncertainty. Ultimately, it is not the tools and methods that need to be revamped as much as the suite of decision rules and evaluation principles used for project justification. They need to be aligned to be more compatible with the implications of a highly uncertain future climate trajectory, so that the hydrologic effects of that uncertainty are correctly reflected in the design of water infrastructure. 相似文献
3.
4.
In this article we present a framework for assessing climate change impacts on water and watershed systems to support management
decision-making. The framework addresses three issues complicating assessments of climate change impacts—linkages across spatial
scales, linkages across temporal scales, and linkages across scientific and management disciplines. A major theme underlying
the framework is that, due to current limitations in modeling capabilities, assessing and responding to climate change should
be approached from the perspective of risk assessment and management rather than as a prediction problem. The framework is
based generally on ecological risk assessment and similar approaches. A second theme underlying the framework is the need
for close collaboration among climate scientists, scientists interested in assessing impacts, and resource managers and decision
makers. A case study illustrating an application of the framework is also presented that provides a specific, practical example
of how the framework was used to assess the impacts of climate change on water quality in a mid-Atlantic, U.S., watershed. 相似文献
5.
Nigel W. Arnell 《Journal of the American Water Resources Association》2011,47(3):541-549
Arnell, Nigel W., 2011. Incorporating Climate Change Into Water Resources Planning in England and Wales. Journal of the American Water Resources Association (JAWRA) 47(3):541‐549. DOI: 10.1111/j.1752‐1688.2011.00548.x Abstract: Public water supplies in England and Wales are provided by around 25 private‐sector companies, regulated by an economic regulator (Ofwat) and environmental regulator (Environment Agency). As part of the regulatory process, companies are required periodically to review their investment needs to maintain safe and secure supplies, and this involves an assessment of the future balance between water supply and demand. The water industry and regulators have developed an agreed set of procedures for this assessment. Climate change has been incorporated into these procedures since the late 1990s, although has been included increasingly seriously over time and it has been an effective legal requirement to consider climate change since the 2003 Water Act. In the most recent assessment in 2009, companies were required explicitly to plan for a defined amount of climate change, taking into account climate change uncertainty. A “medium” climate change scenario was defined, together with “wet” and “dry” extremes, based on scenarios developed from a number of climate models. The water industry and its regulators are now gearing up to exploit the new UKCP09 probabilistic climate change projections – but these pose significant practical and conceptual challenges. This paper outlines how the procedures for incorporating climate change information into water resources planning have evolved, and explores the issues currently facing the industry in adapting to climate change. 相似文献
6.
Sebastian Vicuna Edwin P. Maurer Brian Joyce John A. Dracup David Purkey 《Journal of the American Water Resources Association》2007,43(2):482-498
Abstract: Using the latest available General Circulation Model (GCM) results we present an assessment of climate change impacts on California hydrology and water resources. The approach considers the output of two GCMs, the PCM and the HadCM3, run under two different greenhouse gas (GHG) emission scenarios: the high emission A1fi and the low emission B1. The GCM output was statistically downscaled and used in the Variable Infiltration Capacity (VIC) macroscale distributed hydrologic model to derive inflows to major reservoirs in the California Central Valley. Historical inflows used as inputs to the water resources model CalSim II were modified to represent the climate change perturbed conditions for water supply deliveries, reliability, reservoir storage and changes to variables of environmental concern. Our results show greater negative impacts to California hydrology and water resources than previous assessments of climate change impacts in the region. These impacts, which translate into smaller streamflows, lower reservoir storage and decreased water supply deliveries and reliability, will be especially pronounced later in the 21st Century and south of the San Francisco bay Delta. The importance of considering how climate change impacts vary for different temporal, spatial, and institutional conditions in addition to the average impacts is also demonstrated. 相似文献
7.
Anders Nordgren 《Journal of Agricultural and Environmental Ethics》2016,29(6):1043-1055
Mitigation of climate change is often described as a tragedy of the commons. According to this theoretical framework, it is collectively rational for present-generation countries to mitigate climate change, but not individually rational to do so. It is rather in national self-interest to ‘free-ride’ on the mitigation actions of other countries. In this paper, I discuss two arguments criticizing this view. According to these arguments, it is in most cases individually rational for present-generation countries to mitigate, i.e., it is in their national self-interest. The first argument focuses on national self-interest in terms of economic efficiency, the second on national self-interest in terms of national security. I conclude that the critical arguments to a large extent are tenable, but that they seem to underestimate the significance of those cases in which it is not in national self-interest to mitigate climate change. In these cases the tragedy of the commons framework is still applicable. 相似文献
8.
Frank Ackerman 《Local Environment》2013,18(2):223-229
Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper. 相似文献
9.
Frank Ackerman 《Local Environment》2000,5(2):223-229
Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper. 相似文献
10.
Ungtae Kim Jagath J. Kaluarachchi 《Journal of the American Water Resources Association》2009,45(6):1361-1378
Kim, Ungtae and Jagath J. Kaluarachchi, 2009. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association (JAWRA) 45(6):1361‐1378. Abstract: Climate change affects water resources availability of international river basins that are vulnerable to runoff variability of upstream countries especially with increasing water demands. The upper Blue Nile River Basin is a good example because its downstream countries, Sudan and Egypt, depend solely on Nile waters for their economic development. In this study, the impacts of climate change on both hydrology and water resources operations were analyzed using the outcomes of six different general circulation models (GCMs) for the 2050s. The outcomes of these six GCMs were weighted to provide average future changes. Hydrologic sensitivity, flow statistics, a drought index, and water resources assessment indices (reliability, resiliency, and vulnerability) were used as quantitative indicators. The changes in outflows from the two proposed dams (Karadobi and Border) to downstream countries were also assessed. Given the uncertainty of different GCMs, the simulation results of the weighted scenario suggested mild increases in hydrologic variables (precipitation, temperature, potential evapotranspiration, and runoff) across the study area. The weighted scenario also showed that low‐flow statistics and the reliability of streamflows are increased and severe drought events are decreased mainly due to increased precipitation. Joint dam operation performed better than single dam operation in terms of both hydropower generation and mean annual storage without affecting the runoff volume to downstream countries, but enhancing flow characteristics and the robustness of streamflows. This study provides useful information to decision makers for the planning and management of future water resources of the study area and downstream countries. 相似文献
11.
Joshua H. Viers 《Journal of the American Water Resources Association》2011,47(4):655-661
Viers, Joshua H., 2011. Hydropower Relicensing and Climate Change. Journal of the American Water Resources Association (JAWRA) 47(4):655‐661. DOI: 10.1111/j.1752‐1688.2011.00531.x Abstract: Hydropower represents approximately 20% of the world’s energy supply, is viewed as both vulnerable to global climate warming and an asset to reduce climate‐altering emissions, and is increasingly the target of improved regulation to meet multiple ecosystem service benefits. It is within this context that the recent decision by the United States Federal Energy Regulatory Commission to reject studies of climate change in its consideration of reoperation of the Yuba‐Bear Drum‐Spaulding hydroelectric facilities in northern California is shown to be poorly reasoned and risky. Given the rapidity of climate warming, and its anticipated impacts to natural and human communities, future long‐term fixed licenses of hydropower operation will be ill prepared to adapt if science‐based approaches to incorporating reasonable and foreseeable hydrologic changes into study plans are not included. The licensing of hydroelectricity generation can no longer be issued in isolation due to downstream contingencies such as domestic water use, irrigated agricultural production, ecosystem maintenance, and general socioeconomic well‐being. At minimum, if the Federal Energy Regulatory Commission is to establish conditions of operation for 30‐50 years, licensees should be required to anticipate changing climatic and hydrologic conditions for a similar period of time. 相似文献
12.
Rubens S. Gondim Marco A.H. de Castro Aline de H.N. Maia Sílvio R.M. Evangelista Sérgio C. de F. Fuck 《Journal of the American Water Resources Association》2012,48(2):355-365
Gondim, Rubens S., Marco A.H. de Castro, Aline de H.N. Maia, Sílvio R.M. Evangelista, and Sérgio C. de F. Fuck, Jr., 2012. Climate Change Impacts on Irrigation Water Needs in the Jaguaribe River Basin. Journal of the American Water Resources Association (JAWRA) 48(2): 355‐365. DOI: 10.1111/j.1752‐1688.2011.00620.x Abstract: Climate change is conceptually referred to as a modification to the average of climate variables and their natural variability, due to both natural and anthropogenic driving forces, such as greenhouse gas emissions. Climate change potentially impacts rainfall, temperature, and air humidity, which have relationship with plant evapotranspiration and consequently to irrigation water needs (IWN). The purpose of this research is to assess climate change impacts on irrigation water demand, based on climatic impacts stemming from future greenhouse gas emission scenarios. The study area includes eight municipalities in the Jaguaribe River Basin, located in the Ceará State of semiarid northeast Brazil. The FAO Penman‐Monteith method is used for the calculation of a reference evapotranspiration with limited climatic data. IWN projections are calculated using bias‐corrected climate projections for monthly rainfall and surface temperature derived from the United Kingdom’s Hadley Centre Regional Climate Model simulations. The increase in the average IWN is projected to be 7.9 and 9.1% over the period 2025‐2055 for the A2 and B2 scenarios, respectively with respect to 1961‐1990 baseline. 相似文献
13.
This paper examines structural barriers to the adoption of climate change mitigation practices and the evolution of a climate change ethic among American farmers. It examines how seed corn contracts in Michigan constrain the choices of farmers and allow farmers to rationalize the over-application of fertilizer and associated water pollution and greenhouse gas emissions. Seed corn contracts use a competitive “tournament” system where farmers are rewarded for maximizing yields. Interviews and a focus group were used to understand fertilizer over-application and barriers to participating in a climate change mitigation program. Results indicate that farmers agree that they over-apply fertilizer but would be unlikely to participate in a mitigation program due to their contracts and lack of support from seed corn companies. Because only a few companies control access to the seed corn market, farmers feel they have few choices. Farmers rationalized their practices as their only option given the competitive nature of their contracts and blamed other sources of pollution. Despite increasing efforts to educate farmers about climate change, structural barriers will continue to constrain participation in mitigation efforts and the development of a climate change ethic. 相似文献
14.
Xin Jin Venkataramana Sridhar 《Journal of the American Water Resources Association》2012,48(2):197-220
Jin, Xin and Venkataramana Sridhar, 2012. Impacts of Climate Change on Hydrology and Water Resources in the Boise and Spokane River Basins. Journal of the American Water Resources Association (JAWRA) 48(2): 197‐220. DOI: 10.1111/j.1752‐1688.2011.00605.x Abstract: In the Pacific Northwest, warming climate has resulted in a lengthened growing season, declining snowpack, and earlier timing of spring runoff. This study characterizes the impact of climate change in two basins in Idaho, the Spokane River and the Boise River basins. We simulated the basin‐scale hydrology by coupling the downscaled precipitation and temperature outputs from a suite of global climate models and the Soil and Water Assessment Tool (SWAT), between 2010 and 2060 and assess the impacts of climate change on water resources in the region. For the Boise River basin, changes in precipitation ranged from ?3.8 to 36%. Changes in temperature were expected to be between 0.02 and 3.9°C. In the Spokane River region, changes in precipitation were expected to be between ?6.7 and 17.9%. Changes in temperature appeared between 0.1 and 3.5°C over a period of the next five decades between 2010 and 2060. Without bias‐correcting the simulated streamflow, in the Boise River basin, change in peak flows (March through June) was projected to range from ?58 to +106 m3/s and, for the Spokane River basin, the range was expected to be from ?198 to +88 m3/s. Both the basins exhibited substantial variability in precipitation, evapotranspiration, and recharge estimates, and this knowledge of possible hydrologic impacts at the watershed scale can help the stakeholders with possible options in their decision‐making process. 相似文献
15.
16.
Brian D. Keller Daniel F. Gleason Elizabeth McLeod Christa M. Woodley Satie Airamé Billy D. Causey Alan M. Friedlander Rikki Grober-Dunsmore Johanna E. Johnson Steven L. Miller Robert S. Steneck 《Environmental management》2009,44(6):1069-1088
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation. 相似文献
17.
18.
While US climate change mitigation policy has stalled at the national level, local and regional actors are increasingly taking progressive steps to reduce their greenhouse gas emissions. Universities are poised to play a key role in this grassroots effort by targeting their own emissions and by working with other local actors to develop climate change mitigation programmes. Researchers at the Pennsylvania State University have collaborated with university administrators and personnel to inventory campus emissions and develop mitigation strategies. In addition, they have facilitated a stakeholder-driven climate change mitigation project in one Pennsylvania county and started an ongoing service-learning project aimed at reducing emissions in another county. These campus and community outreach initiatives demonstrate that university-based mitigation action may simultaneously achieve tangible local benefits and develop solutions to broader challenges facing local climate change mitigation efforts. Outcomes include improved tools and protocols for measuring and reducing local emissions, lessons learned about service-learning approaches to climate change mitigation, and methods for creating climate change governance networks involving universities, local governments and community stakeholders. 相似文献
19.
Climate change will pose increasingly significant challenges to managers of parks and other forms of protected areas around
the world. Over the past two decades, numerous scientific publications have identified potential adaptations, but their suitability
from legal, policy, financial, internal capacity, and other management perspectives has not been evaluated for any protected
area agency or organization. In this study, a panel of protected area experts applied a Policy Delphi methodology to identify
and evaluate climate change adaptation options across the primary management areas of a protected area agency in Canada. The
panel identified and evaluated one hundred and sixty five (165) adaptation options for their perceived desirability and feasibility.
While the results revealed a high level of agreement with respect to the desirability of adaptation options and a moderate
level of capacity pertaining to policy formulation and management direction, a perception of low capacity for implementation
in most other program areas was identified. A separate panel of senior park agency decision-makers used a multiple criterion
decision-facilitation matrix to further evaluate the institutional feasibility of the 56 most desirable adaptation options
identified by the initial expert panel and to prioritize them for consideration in a climate change action plan. Critically,
only two of the 56 adaptation options evaluated by senior decision-makers were deemed definitely implementable, due largely
to fiscal and internal capacity limitations. These challenges are common to protected area agencies in developed countries
and pervade those in developing countries, revealing that limited adaptive capacity represents a substantive barrier to biodiversity
conservation and other protected area management objectives in an era of rapid climate change. 相似文献
20.
Kren C. Nelson Margaret A. Palmer 《Journal of the American Water Resources Association》2007,43(2):440-452
ABSTRACT: Multiple anthropogenic stressors, including increased watershed imperviousness, destruction of the riparian vegetation, increased siltation, and changes in climate, will impact streams over the coming century. These stressors will alter water temperature, thus influencing ecological processes and stream biota. Quantitative tools are needed to predict the magnitude and direction of altered thermal regimes. Here, empirical relationships were derived to complement a simple model of in‐stream temperature [developed by Caissie et al. Canadian Journal of Civil Engineering 25 (1998) 250; Journal of Hydrology 251 (2001) 14], including seasonal temperature shifts linked to land use, and temperature surges linked to localized rainstorms; surges in temperature averaged about 3.5°C and dissipated over about 3 h. These temperature surges occurred frequently at the most urbanized sites (up to 10% of summer days) and could briefly increase maximum temperature by >7°C. The combination of empirical relationships and model show that headwater streams may be more pervasively impacted by urbanization than by climate change, although the two stressors reinforce each other. A profound community shift, from common cold and coolwater species to some of the many warmwater species currently present in smaller numbers, may be expected, as shown by a count of days on which temperature exceeds the “good growth” range for coldwater species. 相似文献