首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

2.
The distribution of degading microorganisms of high molecular weight poly(-propiolactone) (PPL), whose individual structural units are similar to those of poly(-hydroxybutyrate) (PHB) and poly(€-caprolactone) (PCL), was examined. Despite the fact that PPL is a chemosynthetic polymer, many kinds of PPL-degrading microorganisms were found to be distributed as resident populations widely in natural environments. A total of 77 strains of PPL-degrading microorganisms was isolated. From standard physiological and biochemical tests, at least 41 strains were referred to as Bacillus species. Microbial degradation of fibrous PPL proceeded rapidly in some enrichment cultures but was not as complete as that of PHB. Most of the isolated PPL-degrading microorganisms were determined to be PCL degraders and/or PHB degraders. Therefore, it can be assumed that mostly PPL is recognized by the microorganisms as PHB or another natural substrate of the same type as which PCL is regarded. Microbial degradation of PPL was confirmed by some Bacillus strains from type culture collections. The similarity of microbial degradation between PPL and PCL was found to be very close.  相似文献   

3.
Fungal degradation of 6:2 fluorotelomer alcohol (6:2 FTOH, C6F13CH2CH2OH) by two wood‐decaying fungal strains and six fungal isolates from a site contaminated with per‐ and polyfluoroalkyl substances (PFASs) was investigated. 6:2 FTOH is increasingly being used in FTOH‐based products, and previous reports on the microbial fate of 6:2 FTOH have focused on bacteria and environmental microbial consortia. Prior to this study, one report demonstrated that the 6:2 FTOH biotransformation by the wood‐decaying fungus, Phanerochaete chrysosporium, generated more polyfluoroalkyl substances, such as 5:3 acid (F(CF2)5CH2CH2COOH), and diverted away from producing the highly stable perfluorocarboxylic acids (PFCAs). Most of the fungi (Gloeophyllum trabeum and isolates TW4‐2, TW4‐1, B79, and B76) examined in this study showed similar degradation patterns, further demonstrating that fungi yield more 5:3 acid (up to 51 mol% of initial 6:2 FTOH dosed) relative to other metabolites (up to 12 mol% total PFCAs). However, medium amendments can potentially improve 6:2 FTOH biotransformation rates and product profiles. The six fungal isolates tolerated up to 100 or 1,000 milligrams per liter of perfluorooctanoic acid and perfluorooctane sulfonic acid, and some isolates experienced increased growth with increasing concentrations. This study proposes that fungal pathways must be considered for the biotransformation of potential PFAS precursors, such as 6:2 FTOH, and suggests the basis for selecting proper microorganisms for remediation of fluoroalkyl‐contaminated sites.  相似文献   

4.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or copolymers with 10% [P(3HB-co-10%3HV)] and 20% [P(3HB-co-20%3HV)] 3-hydroxyvaleric acid was studied in small household compost heaps. Degradation was measured through loss of weight (surface erosion) and changes in molecular weight and mechanical strength. It was concluded, on the basis of weight loss and loss of mechanical properties, that P(3HB) and P(3HB-co-3HV) plastics were degraded in compost by the action of microorganisms. No decrease inM w could be detected during the degradation process. The P(3HB-co-20%3HV) copolymer was degraded much faster than the homopolymer and P(3HB-co-10%3HV). One hundred nine microbial strains capable of degrading the polymersin vitro were isolated from the samples used in the biodegradation studies, as well as from two other composts, and identified. They consisted of 61 Gram-negative bacteria (e.g.,Acidovorax facilis), 10 Gram-positive bacteria (mainlyBacillus megaterium), 35Streptomyces strains, and 3 molds.  相似文献   

5.
Biomax® is an aliphatic-aromatic polyester. The biodegradability of Biomax® was studied at 58 °C using a laboratory scale bioreactor. The bioreactor was inoculated with bacteria derived from compost and supplemented with powdered Biomax® and an additional energy source. After a period of acclimation, the microorganisms in the bioreactor were capable of metabolizing the major components of the polymer, i.e., TPA and ethylene glycol. TPA and ethylene glycol were detected in the bioreactor only when they were added. Degradation and disintegration of the powdered Biomax® was monitored by laser diffraction. The particle size distribution of the powdered polymer progressively shifted toward smaller sizes until the diameters of the polymer particles were indistinguishable from bacteria. The types of microbes in the bioreactor were determined by analyzing 16S rRNA gene sequences. The bacteria belonged to 35 different groups, and the majority of the bacteria appeared to represent new species.  相似文献   

6.
Polyethylene glycol (PEG) 3400-degrading aerobic bacteria were isolated from tap water and wetland sediments and then characterized. Only one Sphingomonas strain was obtained in enrichment cultures from each inoculum source whereas a total of 15 bacterial strains were isolated on agar plates. Nine of the 15 isolates were confirmed as PEG 3400 degraders. Three of the 9 PEG 3400 degraders were Gram-negative bacteria belonging to the genus Pseudomonas and genus Sphingomonas. The remaining six isolates were Gram-positive bacteria belonging to genera Rhodococcus, Williamsia, Mycobacterium and Bacillus. PEG 3400 was quantified at 194 nm spectrophotometrically and, at the same time, the growth of two Gram-negative (isolates P1 and P7) and five Gram-positive (isolates P2, P3, P4, P5 and P6) PEG 3400-degrading bacteria were assayed in liquid media and on agar plates amended with PEG 3400, and also on Nutrient Agar plates and pure agar plates without PEG 3400 addition. No growth was observed on the pure agar plates for all the tested strains for a period of 31 days. All tested PEG 3400 degraders showed much lower viability in liquid culture than on the corresponding agar plates in the presence of PEG 3400. Two Gram-negative isolates P1 and P7 did not show significant growth advantage over the Gram-positive isolates both on the agar plates and in the liquid medium amended with PEG 3400. Our results suggest that diversity of PEG degrading bacteria is high in the environments and culturing techniques affect the successful isolation of the bacteria responsible for degradation.  相似文献   

7.
The efficacy of the oxidation pond on the outskirts of the 10th of Ramadan, the main industrial city, in Egypt was examined. Samples of wastewater collected from the inlet and the outlet were screened for some priority pollutants. Acenaphthene and fluorene were the most frequently detected polycyclic aromatic hydrocarbons, while dimethyl phthalate was the most frequently detected phthalate ester. The spectrum of pollutants, their concentrations and frequencies were similar in the inlet and the outlet, indicating an inferior mineralization capability of the pond. Several degradative bacterial strains were isolated from the pond and grown on M56 minimal media supplemented with different pollutants as the carbon source. The efficacy of pure and mixed cultures to break down fluorene, the most frequently detected pollutant was examined. Fluorene degradation was fast in the first 10 days, then followed by a slow phase. Mixed culture had a higher rate of fluorene degradation in comparison to pure cultures. High performance liquid chromatography analysis of fluorene degradation showed three degradative metabolites. But GC/MS analysis detected one compound, identified as acetamide. The present work has indicated the poor efficacy of the pond. Lack of primary treatment of industrial effluent at factory level, coupled with shock loads of toxicants that may damage the microorganisms and their degradative capabilities are presumably main factors behind such inferior performance. Moreover, the type of pollutants discharged into the pond tend to fluctuate and change depending on the rate from the factories discharge and work shifts. Such irregular feeding of persistent pollutants may have led to a wash out of specialized strains of bacteria capable to degrade such persistent pollutants.  相似文献   

8.
To develop a high performance environment friendly material, highly branched polyester/clay nanocomposites have been prepared from Mesua ferrea Linn seed oil-based polyester resin and hydrophilic bentonite nanoclay. The prepared nanocomposites were characterized by Fourier transform infra-red spectroscopy, X-ray diffractometer, scanning electron microscope, transmission electron microscope and rheological studies. Partial exfoliation of clay layers by the polymer chains with good interfacial interactions was observed in the nanocomposites. The formation of delaminated nanocomposites was manifested through the enhancement of tensile strength, scratch hardness, chemical resistance, impact resistance, thermostability, etc. The results show enhancement of three times in tensile strength and 18 °C in thermostability by inclusion of 5 wt% nanoclay as compared to the pristine polymer. By the influence of 5 wt% nanoclay four times enhancement in elongation at break as compared to the pristine polymer was noticed. Thus these nanocomposites have the potential to be used in many advanced applications.  相似文献   

9.
Microorganisms which can assimilate a new polyester synthesized from polyethylene glycol (PEG) as a dihydroxyl compound and phthalic acid as a dicarboxyl compound were isolated from soils by enrichment culture techniques. Two cultures, K and N, were obtained: Culture K grew on PEG 4000 polyester and culture N assimilated PEG 6000 polyester. Each culture included two bacteria indispensable for the degradation of polyesters: bacteria K1 and K2 for PEG 4000 polyester-utilizing culture K and bacteria N1 and N2 for PEG 6000 polyester-utilizing culture N. Bacteria K2 and N2 were responsible for the hydrolysis of ester bonds in a polyester and both were identified as the same species,Comamonas acidovorans. Bacteria K1 and N6 could assimilate PEG as a sole carbon and energy source. Both are Gram-negative, non-spore-forming rods and resembled each other on their colony characteristics, although strain K1 could not grow on PEG 6000.C. acidovorans N2 (K2) grew on dialkyl phthalates (C2–C4) and phthalate and tributyrin, but not on PEG, diphthalic PEG, and PEG phthalate polyesters. Their culture supernatant and washed cells hydrolyzed PEG (400–20,000) phthalate and sebacate polyesters.C. acidovorans had higher esterase activity toward PEG phthalate, isophthalate, and terephthalate polyesters than known esterase and lipases. The esterase seemed to be an extracellular one and attached to the cell surface.  相似文献   

10.
We intended to find thermophilic degraders of terephthalate-containing Biomax® films. Films in mesh bags were buried in composts (inside temperature: approximately 55–60 °C), resulting in the degradation of them in 2 weeks. Fluorescent microscopy of films recovered from composts showed that microorganisms gradually covered the surface of a film during composting. DGGE analysis of microorganisms on the composted film indicated the presence of Bacillus species as main species (approximately 80% of microbial flora) and actinomycetes (approximately 10–20%) as the second major flora. Isolation of Biomax®-utilizing bacteria was focused on these two genera: two actinomycetes and one Bacillus species were isolated as pure best degraders from the composted polymer films, which were fragmented into small pieces. All the strains were thermophilic and identified, based on their 16S rDNA analyses. Degradation of polymer films was confirmed by (1) accelerated fragmentation of films in composts, compared with a control (no inoculum) and resultant decrease in molecular weights, (2) growth in a powdered Biomax® medium, compared with a control without powdered Biomax®, and (3) production of terephthalate in a powdered Biomax® medium. In this way, we concluded that these bacteria were useful for degradation of thermostable Biomax® products.  相似文献   

11.
Indigenous microorganisms, enriched and isolated from refinery waste sludge, were observed to possess a broad range of metabolic activities for mixtures of several classes of substrates of petroleum hydrocarbons, such as monoaromatic and polycyclic aromatic hydrocarbons (PAHs) and n- and branched alkanes. Three of the best-growing bacterial isolates selectively enriched with these compounds were identified by 16S rDNA sequencing as belonging to the genera Enterobacter and Ochrobactrum. Two of them, Enterobacter sp. strain EK3.1 and Ochrobactrum sp. strain EK6 utilise a hydrocarbon mixture of the branched alkane 2,6,10,14-tetramethylpentadecane and the PAHs acenaphthylene and acenaphthene. Enterobacter sp. strain EK4 can grow with a mixture of 2,6,10,14-tetramethylpentadecane, toluene, acenaphthylene and acenaphthene as carbon sources. Nucleic acid fingerprint analysis, by terminal restriction fragment length polymorphism (T-RFLP) of the PCR-amplified 16S rRNA genes, of the autochthonous bacterial community in contaminated soil samples showed complex and different community structures under different treatments of refinery waste sludge in landfarm areas. The characteristic peaks of the T-RFLP profiles of the individual, isolated degrading bacteria Enterobacter spp. and Ochrobactrum sp. were detected in the T-RFLP fingerprint of the bacterial community of the four months old treated landfarm soil, suggesting the enrichment of bacteria belonging to the same operational taxonomic units, as well as their importance in degrading activity.  相似文献   

12.
Microbial Removal of Arsenic   总被引:1,自引:0,他引:1  
Bangladesh is currently the subject of the world's largest mass arsenic poisoning in history. Groundwater throughout Bangladesh and West Bengal is contaminated with naturally occurring arsenic from the alluvial and deltaic sediments that form the region's aquifers. It has been estimated that 75 million people are at risk of developing health effects associated with the ingestion of arsenic. This project focuses on the use of microorganisms such as bacteria and algae to remove arsenic from water. Arsenic in the arsenite form was used in the studies. Experiments were conducted with a common alga and wastewater bacteria. A common green algae Scenedesmus abundans was used for determining arsenic uptake in batch experiments. Results of the experiments indicated that the algae biosorption could be modeled by the conventional Langmuir isotherm model. Algae morphology studies indicated that the algae cells were impacted due to the presence of arsenic as evidenced by clumping or loss of cell clusters. The wastewater bacteria also were capable of high percent of arsenic removal. Results indicate that microbial uptake of arsenic may be a viable method of pretreatment of arsenic contaminated water. However algae and sludge disposal would pose a problem and will have to be dealt with accordingly.  相似文献   

13.
An electrochemical impedance spectroscopy (EIS) technique was evaluated for monitoring microbial degradation of electronic packaging polyimides. The microbial inoculum was a mixed culture of fungi isolated previously from deteriorated polyimides. The active fungal consortium comprised Aspergillus versicolor, Cladosporium cladosporioides, and a Chaetomium species. After inoculation, fungal growth on the polyimides resulted in distinctive EIS spectra indicative of polymer insulation failure, which directly related to polymer integrity. Degradation appeared to occur in a number of steps and two distinctive stages in the decline of film resistance were observed in the inoculated EIS cells within the 2 and 10 weeks after inoculation. The early stage of resistance decrease may be related to the ingress of water molecules and ionic species into the polymeric materials, whereas the second stage probably resulted from partial degradation of the polymers by fungal growth on the polymer film. The relationship between changes of impedance spectra and microbial degradation of the polymer was further supported by scanning electron microscopy (SEM) observations of fungi growing on the surface of the inoculated polyimides. Our data indicate that the EIS can be used in detection of early degradation of resistant polymers and polyimides that are susceptible to biodeterioration.  相似文献   

14.
石油污染土壤的微生物修复技术   总被引:1,自引:0,他引:1       下载免费PDF全文
李杨  李凡修 《化工环保》2017,37(6):605-610
介绍了石油污染土壤微生物修复技术的影响因素;概述了生物刺激、生物强化、固定化微生物、植物-微生物联合修复以及电动-微生物联合修复石油污染土壤的技术原理,分析了现阶段土壤修复过程中面临的难题,预测了微生物修复技术的研究方向。指出优化微生物的环境条件、培育新型高效的基因工程菌和开发经济高效的新型修复技术等将是未来微生物修复技术的发展趋势。  相似文献   

15.
A moorland soil site polluted with PCB showed a high diversity ofmetabolically active bacteria. Beside frequent types of 16S rRNAsequences similar to those of the species ofSphingomonasand the Acidobacterium phylum an unusual high number ofsequences from the genus Burkholderia were found. Burkholderia was also the main genus in isolates enriched onbiphenyl or various chlorobenzoates. In microcosm experimentssterilized surfaces exposed to PCB polluted soil always showed thepresence of clay aggregates formed by bacteria attached to thesubstratum. The bacteria use the PCB loaded clay colloids astransport medium for the water insoluble substrate to get accessto the carbon source. This is a novel mechanism of how bacteria dealwith hydrophobic substrates.  相似文献   

16.
In Brazil, few studies on microbial content of dental solid waste and its antibiotic susceptibility are available. An effort has been made through this study to evaluate the hazardous status of dental solid waste, keeping in mind its possible role in cross-infection chain. Six samples of solid waste were collected at different times and seasons from three dental health services. The microbial content was evaluated in different culture media and atmospheric conditions, and the isolates were submitted to antibiotic susceptibility testing. A total of 766 bacterial strains were isolated and identified during the study period. Gram-positive cocci were the most frequent morphotype isolated (48.0%), followed by Gram-negative rods (46.2%), Gram-positive rods (5.0%), Gram-negative-cocci (0.4%), and Gram-positive coccobacillus (0.1%). Only two anaerobic bacteria were isolated (0.3%). The most frequently isolated species was Staphylococcus epidermidis (29.9%), followed by Stenotrophomonas maltophilia (8.2%), and Enterococcus faecalis (6.7%). High resistance rate to ampicillin was observed among Gram-negative rods (59.4%) and Gram-positive cocci (44.4%). For Gram-negative rods, high resistance was also noted to aztreonam (47.7%), cefotaxime (47.4%), ceftriaxone and cefazolin (43.7%), and ticarcillin-clavulanic acid (38.2%). Against Gram-positive cocci penicillin exhibit a higher resistance rate (45.0%), followed by ampicillin, erythromycin (27.2%), and tetracycline (22.0%). The present study demonstrated that several pathogenic bacteria are present in dental solid waste and can survive after 48 h from the waste generation time and harbor resistance profiles against several clinical recommended antibiotics.  相似文献   

17.
Plastics are present in a lot of aspects of everyday life. They are very versatile and resistant to microbial attack. Polyurethanes are used in several industries and are divided in polyester and polyether polyurethanes and there are different types among them. Despite their microbial resistance, they are susceptible to the attack of fungi and bacteria but the mechanism to elucidate its biodegradation are unknown. There are reports from bacteria and fungi that are capable of degrading polyurethane but the studies about the enzymes that attack the plastic are focused on bacterial enzymes only. The enzymes reported are of type esterase and protease mainly since these enzymes are very unspecific and can recognize some regions in the polyurethane molecule and hydrolyze it. Fungal enzymes have been studied prior the 1990s decade but recently, some authors report the use of filamentous fungi to degrade polyurethane and also report some characteristics of the enzymes involved in it. This review approaches polyurethane biodegradation by focusing on the enzymes reported to date.  相似文献   

18.
Nickel-resistant bacteria isolated from underneath Ni-hyperaccumulators growing on serpentine soils were screened for production of polyhydroxyalkanoates. These rhizobacteria accumulated poly-3-hydroxybutyric acid [P(3HB)] accounting 3.9–67.7% of cell dry weight during growth in gluconate and/or glucose. Cupriavidus pauculus KPS 201 utilized only gluconate and accumulated about 67.7% P(3HB) while, Bacillus firmus AND 408 utilized both carbon sources for polymer synthesis. The isolates being resistant to Ni also accumulated substantial amount of P(3HB) when grown in presence of the heavy metal and this was revealed by transmission electron microscopic studies. Although B. firmus AND 408 produced only P(3HB) at higher concentrations of gluconate, C. pauculus KPS 201 synthesized copolymer of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV) [P(3HB-co-3HV)]. In presence of 0.8% gluconate and 4 mM Ni, KPS 201 cells produced PHA amounting 81% CDW, which contained 76 and 24 mol% 3HB and 3HV monomers, respectively.  相似文献   

19.
The production of polyesters from triglyceride containing substrates was investigated. A first filter step based on lipase activity was followed and those bacteria potentially able to degrade oils or animal fats were further tested for their polymer accumulation properties, selected and kept for further studies. In a second step, bacteria were directly grown on animal fats and/or vegetable oils, and polyhydroxyalkanoates (PHAs) accumulation was verified under appropriate incubation conditions. Each substrate, whether of animal or vegetable derivation, supported the growth of a number of the newly isolated strains and among those, some strains were also found to produce reasonably high amounts of PHA. The repeat-unit composition of the polyesters was determined by gas chromatography (GC) analysis of the ?-hydroxyalkanoate methyl esters from the hydrolyzed polymer and some class of co-polymers were also detected. These properties, coupled with the ability of some of the selected isolates to grow and produce lipases on a minimal medium, could be considered as promising in view of possible industrial applications. The overall results indicate that PHAs could be produced from waste containing considerable amounts of fat, oil and grease (FOG), that generally need to be treated for their disposal.  相似文献   

20.
Soil retrieval, processing and storage procedures can have a profound effect on soil microorganisms. In particular, changes in soil microbial populations may adversely affect the biological activity of a soil and drastically alter the soil's potential to mineralize added substrates. The effects of cold storage on the biodegradation of a series of test polymers was investigated using two soils—a synthetic soil mix (SM-L8) and a field soil (Bridgehampton silt loam) from Rhode Island (RI-1). Biodegradation tests were conducted using freshly prepared/collected soil and again following storage at 4°C for 3 to 8 months. Prior to each biodegradation test, the soils were incubated at 60% water-holding capacity (WHC) and 25°C to rejuvenate the microbial populations; the soils were incubated for periods of 48 h (freshly collected soil) or 25 days (soils stored at 4°C). Soil microbial populations were assessed by enumerating different segments of the population on agar plates containing different selective media. Mineralization of the test polymers (cellulose, poly-3-hydroxybutyrate, and starch acetate, d.s. 1.5) was monitored using standard respirometric techniques. Our results demonstrated that cold storage had a generally negative effect on the soil microbial populations themselves but that its effect on the capacity of the soil microorganisms to degrade the test polymers varied between soils and polymer type. Whereas cold storage resulted in dramatic shifts in the community structure of the soil microbial populations, substantial restoration of these populations was possible by first conditioning the soils at 60% WHC and ambient temperatures for 25 days. Likewise, although the effects of cold storage on polymer mineralization varied with the test polymer and soil, these effects could be largely offset by including an initial 25-day stabilization period in the test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号