首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
实际生活污水短程/全程硝化反硝化处理中试研究   总被引:7,自引:0,他引:7  
马勇  彭永臻  陈伦强  吴学蕾 《环境科学》2006,27(12):2477-2482
常温条件下,用A/O生物脱氮工艺中试试验装置处理实际生活污水,控制好氧区低DO浓度(0.5 mg/L),实现了短程硝化反硝化反应,亚硝酸氮平均积累率可达85%或更高.研究了低DO短程硝化反硝化、低DO全程硝化反硝化和高DO全程硝化反硝化3种运行方式或状态在总氮去除率、耗氧量、污泥性能和反应机理上的差别.结果表明,短程硝化反硝化是生物脱氮的最优运行方式,它可有效提高系统脱氮率、降低运行费用.短程硝化反硝化过程中缺氧区和好氧区的pH值变化幅度较大;而全程硝化反硝化过程中,缺氧区pH值变化很小或基本不变化,好氧区pH值变化幅度较大.全程硝化和短程硝化的硝化速率相差不大,但短程反硝化速率和全程反硝化速率相比增加了15%.可以应用DO和pH在线控制A/O工艺硝化反应过程.  相似文献   

2.
猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究   总被引:1,自引:5,他引:1  
王欢  李旭东  曾抗美 《环境科学》2009,30(1):114-119
在常温(13~20℃)、不调节pH的条件下,采用短程硝化反硝化预处理低C/N(2左右)猪场废水,考察了反硝化与亚硝化过程,并以经过短程硝化反硝化预处理的猪场废水为进水,分析了厌氧氨氧化的脱氮效果.结果表明,采用短程硝化反硝化预处理低C/N猪场废水,可以达到去除部分COD、部分脱氮、控制出水氨氮和亚硝态氮浓度之比在1∶1左右、pH在7.5~8.0左右的目的,为厌氧氨氧化创造了进水条件,全程COD和总氮平均去除率分别为64.3%和49.1%;经过短程硝化反硝化预处理的猪场废水,其厌氧氨氧化脱氮效果稳定,氨氮、亚硝态氮、总氮的平均去除率分别为91.8%、99.3%、84.1%.  相似文献   

3.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮   总被引:13,自引:4,他引:9  
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌.  相似文献   

4.
固定化微生物在好氧条件下同时硝化和反硝化   总被引:24,自引:1,他引:24  
研究了将硝化菌和反硝化菌混合包埋 ,利用载体对氧产生的扩散阻力在颗粒内部形成好氧区、缺氧区和厌氧区 ,使硝化和反硝化两个过程有机的结合在一起 ,在好氧条件下同时进行硝化和反硝化的新型生物脱氮技术。试验结果表明 :固定化后细胞的活力回收率≥ 70 % ;混合固定的硝化菌和反硝化菌在好氧条件下进行间歇生物脱氮时至少可稳定操作 2 2d ,其间脱氮速率约为 0 1 1kg/m3·d ;单级生物脱氮的最适 pH和温度分别是 8 2和 30℃。  相似文献   

5.
硝化反应及其控制因素   总被引:7,自引:0,他引:7  
对硝化菌和亚硝化菌的特性进行了分析,并就碳源不足的废水实行短程硝化—反硝化脱氮的途径进行探讨。  相似文献   

6.
序批式移动床生物膜反应器内同步短程硝化反硝化的控制   总被引:6,自引:1,他引:5  
在序批式移动床生物膜反应器(SBMBBR)内,对进水COD较低的条件下,模拟生活污水的亚硝化及脱氮性能进行了研究.结果表明,缺氧时间、进水COD、NH44 -N浓度、pH值以及溶解氧对亚硝化过程有明显影响.在进水COD为100mg·L-1NH4 4-N浓度为50mg·L-1时,调控溶解氧、pH,出水的亚硝化率可到99.7%,总氮去除率可达66.4%,表明系统中发生了同步短程硝化反硝化.  相似文献   

7.
短程硝化-反硝化生物滤池脱氮机制研究   总被引:3,自引:4,他引:3  
孙迎雪  徐栋  田媛  李燕飞 《环境科学》2012,33(10):3501-3506
研究了短程硝化生物滤池的调控因素以及短程硝化-反硝化生物滤池的脱氮机制.结果表明,针对城市污水处理厂二级出水中的氨氮和总氮,在水温为(30±1)℃的条件下,提高进水pH值有助于硝化生物滤池中亚硝酸盐的积累,较好地实现短程硝化过程,当进水pH值平均为8.5时,亚硝酸盐的积累达到最大.沿硝化生物滤池水流方向,pH和DO的变化呈相反趋势,亚硝酸盐的积累呈增加趋势,在反应器出水口较好地实现了亚硝酸盐的积累.短程硝化-反硝化生物滤池对NH4+-N有较好的去除效率(90%以上);当反硝化生物滤池进水COD/TN为3.0时,出水TN的浓度降低到8~9 mg.L-1的范围,去除率稳定在79%~81%.  相似文献   

8.
羟胺抑制协同pH调控对人工快渗系统短程硝化的影响   总被引:4,自引:0,他引:4  
陈佼  张建强  文海燕  张青  杨旭  李佳 《环境科学学报》2016,36(10):3728-3735
针对人工快渗系统(CRI)总氮去除率低的问题,研究了羟胺抑制协同pH调控对人工快渗系统实现由全程硝化向短程硝化转化的可行性,探讨了其对系统内氮素污染物迁移转化和硝化功能菌空间分布及活性的影响.结果表明,0.5 mmol·L~(-1)羟胺连续添加13 d后可实现CRI系统短程硝化的快速启动,氨氮去除率、亚硝氮积累率分别为91.1%、77.9%,经16 d不添加羟胺运行后氨氮去除率、亚硝氮积累率分别降低3.9%、9.8%,此时调控进水pH至8.4,氨氮去除率和亚硝氮积累率均超过90%,CRI系统短程硝化效果显著且稳定性较高.羟胺对硝化菌具有选择性抑制,对AOB和NOB产生明显抑制的浓度分别为0.7、0.5 mmol·L~(-1),羟胺浓度为1.0 mmol·L~(-1)时AOB和NOB活性均被严重抑制且解抑较难;pH调控对短程硝化的影响主要与游离氨(FA)的抑制作用有关,对AOB和NOB产生明显抑制的FA浓度分别为26.5、5.6 mg·L~(-1),NOB比AOB对FA的敏感性更高.  相似文献   

9.
在对完全硝化反硝化、同时硝化反硝化(SND)、短程硝化反硝化(SHARON)和缺氧氨氧化(ANAMMOX)生物脱氮技术的研究和开发进展进行分析后,提出了一种新型短程同步硝化反硝化生物膜工艺,并在连续曝气的条件下,对该工艺进行在线监测.结果表明:NO2-的积累率能够达到80%以上,说明系统中发生了短程同步硝化反硝化现象.  相似文献   

10.
硝化类型对污水脱氮过程中N2O产生量的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
采用好氧-缺氧SBR系统,研究实际生活污水脱氮过程中N2O的产生与释放情况,重点考察硝化类型对脱氮过程中N2O产生量的影响.结果表明,实际生活污水脱氮过程中N2O主要产生于硝化阶段,而反硝化阶段有利于降低N2O产生量.硝化类型对脱氮过程中N2O产生量有显著影响.全程硝化和短程硝化过程中N2O-N产生量分别为1.87,0.90mg/L,短程硝化过程中N2O产生量远低于全程硝化过程中N2O产生量.在DO浓度不受限制的情况下,应用实时过程控制,实现短程硝化反硝化,可降低污水脱氮过程中N2O产生量.  相似文献   

11.
移动床生物膜反应器对垃圾渗滤液短程硝化研究   总被引:2,自引:0,他引:2  
杜月  陈胜  孙德智 《环境科学》2007,28(5):1039-1043
采用好氧移动床生物膜反应器(MBBR)对经过厌氧脱碳处理的垃圾渗滤液进行了深度短程硝化研究,考察了在中温(25℃)条件下DO浓度、pH值、C/N等因素对氨氮去除效果和短程硝化效果的影响.结果表明,在进水氨氮浓度为400 mg·L-1,HRT为24 h情况下,当控制DO为2 mg·L-1、pH值在8左右和C/N小于3时,氨氮去除率能达到70%以上,亚硝酸盐氮的积累率高达90%.间歇试验证明了该生物膜反应器中亚硝化菌的数量和活性要远高于硝化菌.该移动床生物膜工艺可以选择性固定和积累氨氧化细菌,从而实现较高的氨氮去除率和稳定的亚硝酸盐氮积累率.  相似文献   

12.
SBR反应器内短程硝化系统快速启动及影响因素研究   总被引:7,自引:0,他引:7  
探讨了采用序批式反应器(SBR)快速启动自养短程硝化系统的方法,研究了溶解氧(DO)、pH、温度、外加有机碳源对自养短程消化系统的影响。以硝化污泥接种反应器(SBR),在纯自养条件下利用高浓度溶解氧1.0~1.6mg/L和中温(35±1)℃达到亚硝酸氮的快速积累。结果表明,在进水氨氮浓度为280~300mg/L,HRT为12h,控制pH值为7.5~8.5、温度在(28±1)℃、溶解氧浓度为0.8~1.2mg/L条件下,氨氮去除率达到90%以上,亚硝酸氮积累率高达95%。试验证明投加有机碳源(COD)50mg/L左右时,不会对短程硝化系统产生影响,且能实现较高氨氮去除率和稳定的亚硝酸氮积累率。  相似文献   

13.
介绍了短程硝化反硝化的生物脱氮机理,综述了短程硝化反硝化过程中影响HNO2积累的主要因素游离性氨(FA)、pH、温度、溶解氧(DO)和污泥泥龄等,探讨了实现短程硝化反硝化的途径  相似文献   

14.
影响潜流人工湿地脱氮主要因素及其解决途径   总被引:1,自引:0,他引:1  
文章综述了潜流人工湿地除氮的各种机理,包括基质吸附、植物吸收、氨挥发、硝化-反硝化等,其中硝化-反硝化是最主要的脱氮过程。在人工湿地脱氮工艺方面,短程硝化反硝化和厌氧氨氧化是今后研究的前沿。此外讨论了影响人工湿地除氮效率的主要影响因素,包括温度、溶解氧、pH、碳源、重金属、水力学因素等,其中碳源、重金属和水力学方面的影响是研究的热点和前沿。最后,进一步综述了提高人工湿地脱氮效率的研究方法,并对今后的相关研究方向进行了展望。  相似文献   

15.
硝化过程中影响亚硝酸盐积累的因素   总被引:5,自引:0,他引:5  
采用间歇式批试验法,改变pH值、DO浓度和温度,试验发现:当pH值分别为8.2、7.5、9.2、6.5和5.0,DO分别为1.0mg/L、2.0mg/L、4.5mg/L和温度为30℃、25℃、35℃和10℃时,氨氧化速率依次减小。进水氨氮浓度为50mg/L~250mg/L,保持pH值为8.0±0.2时,游离氨浓度为4.45mg/L~22.68mg/L左右,最大HNO2浓度远<0.2mg/L,游离氨和HNO2对好氧氨氧化菌的影响较小。结果表明,pH值、DO浓度和温度对好氧氨氧化菌的富集有显著影响。在富集过程中,控制pH值、DO浓度和温度是关键因素,游离氨和HNO2进行适当控制,以保证抑制亚硝酸盐氧化菌而不抑制好氧氨氧化菌。  相似文献   

16.
采用Miseq高通量测序技术研究氨氮进水负荷对ABR-MBR组合工艺MBR池中微生物种群的丰度及优势菌群的影响.结果表明,温度为28~32℃、pH值为7.1~7.4、DO为0.5~1mg/L并逐步提高氨氮进水负荷的条件下,可以使氨氧化菌(AOB)大量富集,并抑制亚硝酸盐氧化菌(NOB)的活性,从而实现短程硝化的稳定运行.在氨氮进水负荷为0.94kg/(m3·d)时,平均亚硝酸盐积累率达到60%以上,氨氮去除率稳定在90%.在系统运行过程中,变形菌门是系统中的优势菌门,Nitrosomonas的相对丰度由4.97%升至22.56%,硝化螺菌属的相对丰度为0.06%~2.12%.因此,ABR-MBR组合工艺短程硝化过程中亚硝酸盐积累率与AOB的活性、相对丰度密切相关,即AOB的大量富集可以有效实现短程硝化,而NOB的小幅度增长不会影响短程硝化的实现.系统中微生物种群的多样性和功能微生物的结构稳定性保证了ABR-MBR工艺具有稳定和较好的处理效果.  相似文献   

17.
利用UASB反应器分别在降低进水亚硝氮/氨氮比(R)和停供亚硝氮条件下研究了Anammox体系运行特性.发现随着进水亚硝氮减少,亚硝氮与氨氮去除摩尔比减小,发生氨氮超量去除现象,即使进水无亚硝氮时也可去除氨氮.当R为1:2时,氨氮超量去除量达最大,均值为57.2mg/L;长期停供亚硝氮条件下氨氮能够稳定去除,平均去除量为45.6mg/L.停供亚硝氮后Anammox体系中微生物群落多样性增加,AnAOB、氨氧化菌和反硝化菌相对丰度均增加.其中AnAOB相对丰度从9.44%增长到13.26%;氨氧化菌相对丰度从3.29%增长到7.3%;反硝化菌相对丰度由0.54%增加到3.14%.研究表明,溶解氧是氨氮超量去除量的限制性因素,氨氮超量去除的途径包括:好氧氨氧化、厌氧氨氧化与部分内碳源反硝化.在微量溶解氧作用下,主要是氨氧化菌与厌氧氨氧化菌协同实现了氮的去除.  相似文献   

18.
于濛雨  刘毅  田玉斌  石欢  徐富  杨宏 《环境科学》2017,38(7):2925-2930
为了提高包埋氨氧化细菌短程硝化的效率,富集培养氨氧化细菌(AOB)并固定化.富集培养阶段采用连续式运行方式,以游离氨(FA)为抑制亚硝酸盐氧化菌(NOB)生长的手段,并通过定时排泥方法使NOB逐渐从系统中淘洗出去.富集培养结束后以聚乙烯醇(PVA)为包埋材料,对筛选培养的氨氧化细菌进行固定化,反应器包埋填充率为8%.采用连续式运行方式,通过逐步增加氨氮负荷的方法提高氨氧化速率.最终在富集培养系统中实现了污泥比氨氧化速率(以NH_4~+-N/VSS计)2.028 g·(g·d)~(-1)的高表达和亚硝酸盐氮90%以上的高积累.通过对污泥富集培养前后细菌群落组成的高通量测序分析,结果表明,培养前原污泥多样性较大,具有硝化作用的Nitrosomonas仅有0.24%,Nitrospira有2.7%.富集培养后的活性污泥多样性明显变小,优势菌种为Nitrosomonas(18%),而Nitrospira仅剩0.02%;包埋固定化后,系统迅速实现了短程硝化,最终短程硝化的速率达到了50 mg·(L·h)~(-1),亚硝酸盐氮积累率稳定在90%以上.  相似文献   

19.
环境温度下,以生物活性碳A/O工艺实现短程硝化反硝化处理城市生活污水。研究了具有短程硝化反硝化功能的生物活性碳污泥培养,并对HRT、曝气量及A/O体积比、回流比进行了讨论。结果得到在环境温度20~26℃,进水NH4+-N浓度150 mg/L,HRT为8 h,曝气量0.3 L/min条件下,亚硝酸积累率高达75%,达到了短程硝化目的;在A/O体积比为1:2,回流比为2:1时,短程硝化反硝化的TN去除率高达86.9%,COD去除率达92.7%;生物活性碳污泥在试验阶段无污泥膨胀发生,SVI稳定在150左右;处理实际城市生活污水,系统运行稳定,COD、NH4+-N、TN去除率分别平均达91.3%,98.8%,90.2%。  相似文献   

20.
为了研究溶解氧对SBR单级颗粒污泥自养脱氮系统的影响,基于活性污泥ASM3模型和短程硝化-硝化-反硝化模型,将颗粒污泥传质过程与氨氧化菌(AOB)、厌氧氨氧化菌(AAOB)、亚硝酸盐氧化菌(NOB)、反硝化菌(DNF)的生长过程、好氧内源呼吸及缺氧内源呼吸过程等耦合,建立了单级自养脱氮颗粒污泥动力学模型,并对颗粒内部基质浓度分布进行预测.结果显示,当DO为0.4mg/L时,好氧区和缺氧区(厌氧区)的比例为0.4:1;当DO为0.6mg/L时,颗粒污泥好氧区与缺氧区(厌氧区)的比例为3:1.同时,根据基质反应速率方程,建立了颗粒污泥的单级自养脱氮系统动力学模型,对SBR系统运行效果进行预测,结果显示,DO为0.6mg/L时,氨氮反应完全,亚硝酸盐氮和硝酸盐氮在5mg/L以下,总氮去除率模拟值为89%左右,略低于实际测量脱氮率95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号