首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Raskoff 《Marine Biology》2002,141(6):1099-1107
Narcomedusae are the most common group of medusae in the mesopelagic depths of Monterey Bay, California. Numerous capture events of various prey taxa were recorded in situ and analyzed using the Monterey Bay Aquarium Research Institute's remotely operated vehicle "Ventana". In situ video analysis of the stomach contents of 82 Solmissus incisa and S. marshalli revealed 88 identifiable prey items. Most (88%) were gelatinous animals. Of these gelatinous prey, 60.3% were ctenophores, 20.5% were cnidarians, 12.8% were salps, 3.8% were chaetognaths, and 2.6% were polychaetes. Euphausiids accounted for 11.4% of the diet, but they were probably captured adventitiously, as the gut contents of ctenophore prey. The tentacle-first foraging behavior of the narcomedusae is an effective way to capture large, comparatively fast-moving prey, because the fluid disturbance caused by swimming is decoupled from the area of prey capture. This behavior contrasts with the prevailing models of feeding behavior in medusae. Stealth predation may be the dominant mode of capturing prey by medusae in the mesopelagic depths of the oceans.  相似文献   

2.
The ctenophore Mnemiopsis leidyi A. Agassiz, 1865 is known to be eaten by the scyphomedusan Chrysaora quinquecirrha (Desor, 1948), which can control populations of ctenophores in the tributaries of Chesapeake Bay. In the summer of 1995, we videotaped interactions in large aquaria in order to determine whether M. leidyi was always captured after contact with medusae. Surprisingly, M. leidyi escaped in 97.2% of 143 contacts. The ctenophores increased swimming speed by an average of 300% immediately after contact with tentacles and 600% by mid-escape. When caught in the tentacles of C. quinquecirrha, the ctenophores frequently lost a portion of their body, which allowed them to escape. Lost parts regenerated within a few days. The striking ability of M. leidyi to escape from C. quinquecirrha may be critically important in maintaining ctenophore populations in situ. Received: 14 November 1996 / Accepted: 4 December 1996  相似文献   

3.
Paraeuchaeta norvegica (8.5 mm total length) and yolk-sac stage Atlantic cod larvae (4 mm total length) (Gadus morhua) larvae were observed in aquaria (3 l of water) using silhouette video photography. This allowed direct observations (and quantitative measurement) of predator–prey interactions between these two species in 3-dimensions. Tail beats, used by cod larvae to propel themselves through the viscous fluid environment, also generate signals detectable by mechanoreceptive copepod predators. When the prey is close enough for detection and successful capture (approximately half a body-length), the copepod launches an extremely rapid high Reynolds number attack, grabbing the larva around its midsection. While capture itself takes place in milliseconds, minutes are required to subdue and completely ingest a cod larva. The behavioural observations are used to estimate the hydrodynamic signal strength of the cod larva’s tail beats and the copepod’s perceptive field for larval fish prey. Cod larvae are more sensitive to fluid velocity than P. norvegica and also appear capable of distinguishing between the signal generated by a swimming and an attacking copepod. However, the copepod can lunge at much faster velocities than a yolk-sac cod larva can escape, leading to the larva’s capture. These observations can serve as input to the predator–prey component of ecosystem models intended to assess the impact of P. norvegica on cod larvae.  相似文献   

4.
The feeding ecology of Merluccius hubbsi was investigated in 2 regions of SE Brazil. The major food sources for the hakes were fish, crustaceans, and squid. In the upwelling system of Cabo Frio, the diet was very similar in the summers of 2001/2002 and spring 2002; fish were the most important prey followed by crustaceans. In Ubatuba, euphausiids were an important prey during the winter 2001 (100 m), while in the summer 2002, fish and amphipods predominated in the diet in the shallower site (40 m) and squid in the deeper site (100 m). The hakes showed temporal differences in stable isotope signatures in both regions, while C:N ratios varied only in Cabo Frio. δ15N and δ13C (bulk and corrected for lipid content) increased with fish length, which seems to be related to the increasing importance of fish and decreasing importance of euphausiids and amphipods in the diet of larger hakes. The mean trophic level of 3.7 for M. hubbsi was estimated using δ15N of bivalves as baseline and the fractionation of 3.4‰ between trophic levels.  相似文献   

5.
We used microsatellite genetic markers to investigate adult population structure and the formation of a new year-class in Sebastes mystinus (blue rockfish). Since S. mystinus may live as long as 45 years and reach reproductive age at approximately 5 years, the adult population may contain as many as eight generations of reproductive adults. We investigated whether the juveniles of the 2000 year-class and the adult population were genetically homogeneous along the California coast. We sampled approximately 100 juveniles from three sites, two sites along the Monterey Peninsula (Carmel and Monterey) in central California and one at Fort Ross in northern California, and approximately 50 adult S. mystinus from five sites throughout the population center. The adult sampling spanned approximately 700 km from the northern Channel Islands to Fort Bragg. The juveniles showed significant heterogeneity in allele frequencies among distant locations and genetic homogeneity among adjacent locations. In contrast, the adults showed genetic homogeneity over large distances (San Miguel Island to Fort Bragg), indicating little limitation of gene flow in this region. Allele frequencies of juveniles differed from adult samples and in some cases reduced genetic diversity indicative of sweepstakes recruitment (small sample of the adult reproductive potential). The genetic structure of the 2000 year-class suggests that despite a genetically homogenous adult population, settled juveniles can be genetically heterogeneous along the California coast. The results also suggest that the adults, with several year-classes, are capable of maintaining a panmictic population despite the genetic distinctiveness of individual year-classes.  相似文献   

6.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

7.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

8.
Examination of the lobate ctenophore Leucothea sp. has revealed new patterns of swimming and water manipulation in addition to the typical ctenophore mode of slow swimming with ctene plate (comb) ciliary propulsion. We distinguish between slow ctene propulsion and rapid ctene propulsion; the latter is accomplished by an increased ciliary beat that produces a coupled vortex wake, resulting in jet propulsion. The large oral lobes both capture prey and provide undulatory muscular propulsive power. The auricles exhibit distinct phasic synchrony and aphasic or sculling motions that generate small vortices in the water which facilitate prey capture. Distinctive papillae covering the exterior of Leucothea sp. may be chemo- or mechano-sensory structures. The integration of all of these structures results in an organism that is more complex behaviorally than might be expected on the basis of its superficially simple and delicate body plan. Field work involved blue-water diving in the waters of the California Bight during June and July, 1985.  相似文献   

9.
We examined recruitment and ontogenetic habitat shifts of the yellow snapper Lutjanus argentiventris in the Gulf of California, by conducting surveys and collections in multiple mangrove sites and major marine coastal habitats from 1998 to 2007. Over 1,167 juvenile individuals were collected and 516 otoliths were aged to describe the temporal pattern of the settlement. L. argentiventris recruits in mangroves, where juveniles remain until they are approximately 100 mm in length or 300-days-old. Back-calculated settlement dates and underwater surveys indicated a major recruitment peak during September and October, around 8 days before and after the full moon. The majority of mangrove sites in the Gulf of California had a similar L. argentiventris average size at the beginning of the settlement season for the cohort of 2003; although there were significant differences in individual sizes at the end of the nursery stage. When sub-adults leave mangroves, they live in shallow rocky reefs and later become abundant in deeper rocky reefs. The density of migratory individuals (10–20 cm SL) decreased exponentially as the distance between a reef and a nearby mangrove site increased. This finding has important implications for local fishery regulations and coastal management plans.  相似文献   

10.
Phyllorhiza punctata, commonly called the Australian white spotted jellyfish, invaded the Caribbean in the 1960s, becoming established there and subsequently in the United States in the northern Gulf of Mexico (by 2000) and eastern Florida (2001). With the prevailing Loop Current flowing clockwise around the Gulf of Mexico and joining the Gulf Stream along eastern Florida, potential transport of P. punctata along the eastern seaboard of the USA could be facilitated. P. punctata medusae were collected in small numbers along the entire Georgia coast during May–November in 2007 and 2008. Medusa bell diameters increased both years from ca. 10 cm in May to ca. 33 cm in autumn. Specimens lacked zooxanthellae, as reported for medusae in the northern Gulf of Mexico and Florida. It is possible that the P. punctata medusae observed were transported from established populations to the south; however, whether or not this species is established along the Georgia coast has yet to be determined.  相似文献   

11.
The rare ctenophore Haeckelia rubra (formerly Euchlora rubra) has long been known to have nematocysts rather than colloblasts in its tentacles. Five specimens were collected in the San Juan Archipelago, Washington State, USA in 1980 and 1981, and their feeding behavior was observed in the laboratory. We found that H. rubra readily eats the tentacles of a medusa, Aegina citrea, whose nematocysts (apotrichous isorhizas) are nearly identical in morphology to the nematocysts of the ctenophore. When H. rubra was offered 16 other species of hydromedusae and 1 siphonophore in the laboratory, the ctenophores showed little or no tendency to ingest these potential prey items. In addition to its routinely positive response to A. citrea, the ctenophore could be induced by manipulation and starvation to accept and ingest bits of the bodies of 4 additional species of hydromedusae and 1 siphonophore. These results, combined with the histological and rearing experiments of other investigators, leave little doubt that the nematocysts in H. rubra are not endogenous, but are kleptocnidae similar to those nematocysts retained and subsequently used by some species of nudibranchs that feed on Cnidaria. A close phylogenetic link between the Cnidaria and the Ctenophora is most unlikely.  相似文献   

12.
Remotely operated vehicle (ROV)-based field studies on the distribution and behaviour of Periphylla periphylla Péron and Lesueur (Ann Mus Hist Nat Marseille 14:316–366, 1809), from three Norwegian fjords have been combined with on-board experiments and morphological and histological studies in order to understand the trophic ecology of this species. Field studies from one of the fjords showed that the zooplankton biomass was negatively related with P. periphylla abundance, indicating a predatory effect. The majority of zooplankton biomass tended to be distributed above the aggregation of P. periphylla, which in turn showed highest abundance at 100–200 m depth. Observation on the orientation of medusae passing the ROV when descending down in the water column at dawn and dusk, showed no consistency with the theory of diel vertical migration. Estimated metabolic demand of P. periphylla indicated a daily predation impact on the prey assemblage of 13% as an average for the fjord. In situ behavioural observations showed that the dominant tentacle posture of large medusae was straight upward, with tentacles extended to the oral–aboral body axis. The hunting mode alternates between ambush and ramming, whereby tentacle posture minimises the water turbulence that may otherwise alarm the prey. The musculature of the tentacles is well developed, with an especially strong longitudinal muscle on the oral side, facilitating fast movement of the tentacle towards the mouth. In addition, ring-, radial-, and diagonal musculatures are also present. The diagonal is probably most important for the corkscrew retraction of the tentacle, used at the moment of prey capture. Results from laboratory experiments show that different body-parts of P. periphylla vary in sensitivity for chemical and mechanical stimuli, including hydrodynamic disturbance and vibration in the surrounding water. Feeding success is facilitated by combining the vibration-sense on the tentacle tips and the marginal lappets, the touch-sense on the tentacle bases and marginal lappets, and a taste control of the captured prey at the mouthlips.  相似文献   

13.
In 1977, Phidiana hiltoni (O’Donoghue in J. Entomol Zool (Pomona College, Claremont, California) 19:77–119, 1927) began spreading northward from Monterey, California. By 1992, it had reached Duxbury Reef (37° 53′ 23″ N, 122° 41′ 59″ W), 100 km to the north, where other nudibranchs subsequently appeared to decline. The role of P. hiltoni in this decline was investigated through diet analysis, feeding trials, and comparison of historical and recent abundance data. In the wild, P. hiltoni preyed largely on hydroids, but also showed evidence of predation on nudibranchs. In the laboratory, P. hiltoni attacked most of the dendronotid and aeolid nudibranchs presented to it, ingesting small individuals whole. The pooled abundance of nudibranchs vulnerable to attack by P. hiltoni declined an average of two-thirds at Duxbury Reef since its arrival, compared to (1) no change in the non-vulnerable species and (2) no change in either group at two other sites where P. hiltoni was one to two orders of magnitude less abundant. Phidiana hiltoni therefore appears to have caused this decline, likely through a combination of direct predation and competition for prey. A brief larval period, combined with cyclonic re-circulation in the lee of Point Reyes, may be driving self-recruitment of P. hiltoni at Duxbury Reef, as well as hindering further northward spread.  相似文献   

14.
In diet analyses of seabirds, fatty acid signatures (FAS) can be used to overcome biases due to differential digestion of prey and enable the analysis of very digested diet samples. We applied FAS analysis to stomach contents of a small sub-Antarctic seabird, the Thin-billed Prion Pachyptila belcheri, which feeds mainly on squid during incubation and on crustacea during chick rearing. This seasonal dietary switch of Thin-billed prions was reflected in differences in FAS in regurgitates, as were inter-annual differences in diet composition. A discriminant function analysis correctly classified 93.4% of cases with respect to year (2006–2008) and stage of the breeding cycle (incubation versus chick rearing). The dominant types of crustacea in the diet of Thin-billed prions (amphipods Themisto gaudichaudii, euphausiids, decapods Munida gregaria, and calanoid copepods) were distinguished well by characteristic FAS patterns. However, the FAS of the two main types of prey by volume, amphipods T. gaudichaudii and squid Gonatus antarcticus, were similar to each other. Although FAS were successfully applied in the analysis of prey in stomach contents of prions, FAS of some prey species were similar and may not be distinguishable from each other if used in quantitative diet analyses.  相似文献   

15.
Individuals of the siphonophore Rosacea cymbiformis (Chiaje, 1822) were collected in surface waters of the Gulf of California during July/August 1978, off Southern California during May 1980, and in the Sargasso Sea during July 1979. Specimens were preserved within 30 min after capture, and the ingested prey in the gastrozooids were examined microscopically and identified to the closest practical taxon. Most gastrozooids (50 to 84%) contained recognizable prey organisms. The prey were primarily copepods, but crab zoeae, pelagic molluscs, juvenile shrimps and mysids were also commonly eaten. There were significant differences between the sizes and types of prey organisms that had been ingested and that were available in the environment of the siphonophores. Electivity indices for the prey demonstrated that the large and/or active prey were selected. The feeding selectivity exhibited by the siphonophores probably depends upon speed and diameter of the prey, which affect the frequency of contact with the siphonopore tentacles. Behavioral observations suggest that R. cymbiformis feeds primarily in the light. Digestion experiments indicate that most prey remain in the gastrozooids for 8 h or more before egestion. The caloric values of common prey types were derived from their length to dry weight regressions. The caloric consumption of R. cymbiformis during the 4 to 6 h feeding period following sunrise was estimated to be from 0.109 to 0.365 cal per gastrozooid; the daily caloric consumption was projected to be at least 2.4 to 8.2 times that required to balance metabolism.  相似文献   

16.
Some western Norwegian fjords host extraordinarily abundant and persistent populations of the mesopelagic, coronate scyphomedusa, Periphylla periphylla. In these environments, from late autumn to spring, the medusae undertake regular diel vertical migrations into surface waters. From unique observations obtained with a remotely operated vehicle (ROV), including observations made without artificial light, we observed that 90% of the medusae swam with their tentacles in aboral position. Stomach content analyses of surface-collected specimens revealed that the medusae ate mainly calanoid copepods, but ostracods and large euphausiids were also prominent components of their diets. The clearance rate potential of P. periphylla, assessed from in situ observations and stomach contents, was comparable to that of similar-sized, epipelagic gelatinous species. Our findings suggest that P. periphylla behave as active predators in surface waters.  相似文献   

17.
S. Imsand 《Marine Biology》1981,63(1):87-100
Prey (chiefly euphausiids and copepods) eaten by two myctophids (lanternfishes) are compared from incidence in fish stomachs and from abundance in the environment. One lanternfish species, Triphoturus mexicanus, lives in the California Current, and the other, T. nigrescens, lives in the central Pacific Ocean. Although these two environments are very different physically and biologically, the feeding habits of the two lanternfishes are surprisingly similar. Prey biomass is 94% euphausiids, 3% copepods, and 3% other organisms for T. mexicanus and 88% euphausiids, 4.5% copepods, and 7.5% other organisms for T. nigrescens; the difference between the fish species is not significant when tested statistically. The two fishes resemble one another in frequency distributions of ingested copepod individuals, copepod species, euphausiid individuals, and euphausiid species. During a single diurnal feeding period, both fishes eat a variety of copepod species but tend to eat only a single species of euphausiid. T. mexicanus grows to twice the length of T. nigrescens and eats proportionally larger euphausiids; however, both fishes eat copepods having the same median size. The frequencies of euphausiid species in the diets of both fishes differ from the frequencies in the environment. The chief differences between the feeding habits of the two lanternfishes are that T. nigrescens, in comparison to its congener, eats a greater variety of organisms during one diurnal feeding period and captures smaller euphausiids. The feeding patterns for each lanternfish species are consistent over distances of hundreds of kilometers and over many years of sampling.  相似文献   

18.
19.
Few numerical simulations have attempted to include a high degree of biological detail for several trophic levels. Typically, in planktonic ecosystem models, if the dynamics of nutrients, phytoplankton and herbivorous zooplankton are formulated with ecological complexity, then carnivores are ignored, forced or modeled in an extremely simplified manner. Extensive mechanistic detail for important carnivores is difficult to represent because reliable and relevant ecological data are rarely available for appropriate species and local populations. Further, the wide temporal and spatial differences between life histories of lower plankton and carnivores may be technically difficult to model.In Narragansett Bay, Rhode Island, the ctenophore Mnemiopsis leidyi is an important carnivore to which these objections do not apply. A detailed carbon-based simulation model of this population of ctenophores was developed independently from an ecosystem model of Narragansett Bay which included detailed interactions between phytoplankton, primarily herbivorous zooplankton and nutrients. The interfacing of these two models without changing any of the formulations or values of the coefficients provided a test of the commonly used practice of forcing certain components. Both models were originally constructed with the biomass of a critical compartment forced according to observed data; in the plankton model, ctenophores were forced, and in the ctenophore model, zooplankton were forced.Predicted biomasses for zooplankton and ctenophores in the combined model were similar to the results of the two parent models, but improved relative to the actual field observations. From the findings it appears that the strategy of forcing is valid provided the forced patterns are appropriate and reasonable.  相似文献   

20.
Vertical distribution, diet, and morphology of adults were examined in 27 species of euphausiids occurring in the upper 1000 m in the eastern Gulf of Mexico. Vertical distribution patterns were similar to those found in the central ocean gyres and oceanic equatorial waters of the Atlantic, Indian and Pacific Oceans. Most species migrated vertically from their daytime depths of 300 to 600 m to the upper 300 m at night. Exceptions were the non-migrating species of Stylocheiron, which remained in the epipelagic zone day and night, and Nematobrachion boopis, which remained in the mesopelagic zone. Based on gut-contents analysis, the Gulf euphausiids were largely zooplanktivorous, with cyclopoid and calanoid copepods being the most common items in stomachs. ostracods were especially common in the stomachs of Thysanopoda spp. and phytoplankton in the guts of Euphausia spp. Nearly every species' diet contained a considerable amount of olive-colored debris, which may have been marine snow generated in the epipelagic zone. Cluster analysis grouped the euphausiids into nine diet guilds. Euphausiids with a generalized morphology (i.e., spherical eyes, uniform thoracic appendages) tended to group together and demonstrated little variety in stomach contents among species. Euphausiids with a specialized morphology (i.e., bilobed eyes, elongate thoracic appendages) showed considerable variety in stomach contents among species, and several species had diets that were highly specific. Many of the species that had similar gut contents fed on prey of different sizes, as indicated by the width of the calanoid copepod mandibles found in stomachs. Principal-components analysis of seven morphological characters yielded species groups that were similar, but not identical, to those generated by cluster analysis of stomach contents data. We inferred from this that morphological characters partly determine diet, but that behavior is also important. Using the 20 most abundant species and 3 niche parameters, we attempted to identify the degree of separation among euphausiids based on the level of overlap in vertical distribution and diet composition, and on differences in mean prey size. Overlap of <60% in vertical distribution or diet composition was considered to indicate distinction of that parameter. Of 190 total species pairs, only 4 pairs did not demonstrate niche separation in at least one of these categories. We found that differences in these niche parameters were greatest among species with a specialized morphology and least among species that were morphologically generalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号