首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The method used to produce a critical load map of acidity for soils in Great Britain is described. Critical loads were assigned to the dominant soil in each 1 km grid square of the UK national grid. Mineral soils were assigned a critical load based on mineralogy and chemistry, using approaches appropriate to UK conditions. Critical loads for peat soils are based primarily on a maximum acceptable reduction of peat pH, and results from laboratory equilibration studies. The map shows that soils with small critical loads (<0.5 kmolc ha−1 year−1) i.e. highly sensitive to acidic deposition, dominate in the north and west of Britain; the south and east are dominated by soils with large critical loads, with small areas of more sensitive soils associated with sandy soil-forming materials. A modified critical load map illustrates the potential impact of agricultural liming on soil critical loads.  相似文献   

2.
Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A pollutant load in excess of a critical acid load is termed exceedance. This study combined a simple mass balance equation with national-scale databases to estimate critical acid load and exceedance for forest soils at a 1-km(2) spatial resolution across the conterminous US. This study estimated that about 15% of US forest soils are in exceedance of their critical acid load by more than 250eqha(-1)yr(-1), including much of New England and West Virginia. Very few areas of exceedance were predicted in the western US.  相似文献   

3.
The premise of this paper is that: (1) effects of spatial heterogeneity of watershed response to acid deposition must be considered when models are used to set abatement policies, and (2) the evaluation of critical chemical values is a better measure off the effects of abatement policies than the comparison of deposition values to critical loads. The authors used Monte Carlo methods to apply a site-specific version of the RAINS-Lake-Model to a regional data set from The Netherlands. Statistical methods were then used to identify the important parameters affecting the spatial and temporal response, i.e. a change in pH, of watersheds to acid deposition and a subset of sensitive and insensitive watersheds were derived. The results show that the failure to subset a region into sensitive and insensitive zones may result in an erroneous estimation of the effect of abatement policies based on critical loads alone.  相似文献   

4.
The pH of south Swedish soils have decreased considerably during the last 15–35 years. The decrease has occurred throughout the soil profile, not only in the rhizosphere, and is particularly marked in the originally less acid soils. The pH decrease was accompanied by considerable losses of exchangeable Na, K, Mg and Ca, as well as of Zn and (in the originally less acid soils) of Mn. The changes can be prognosticated from the current relationship between soil pH and base saturation and from budget calculations based on lysimeter data.  相似文献   

5.
Mapping the spatial distribution of soil pollutants is essential for delineating contaminated areas. Currently, geostatistical interpolation, kriging, is increasingly used to estimate pollutant concentrations in soils. The kriging-based approach, indicator kriging (IK), may be used to model the uncertainty of mapping. However, a smoothing effect is usually produced when using kriging in pollutant mapping. The detailed spatial patterns of pollutants could, therefore, be lost. The local uncertainty of mapping pollutants derived by the IK technique is referred to as the conditional cumulative distribution function (ccdf) for one specific location (i.e. single-location uncertainty). The local uncertainty information obtained by IK is not sufficient as the uncertainty of mapping at several locations simultaneously (i.e. multi-location uncertainty or spatial uncertainty) is required to assess the reliability of the delineation of contaminated areas. The simulation approach, sequential indicator simulation (SIS), which has the ability to model not only single, but also multi-location uncertainties, was used, in this study, to assess the uncertainty of the delineation of heavy metal contaminated soils. To illustrate this, a data set of Cu concentrations in soil from Taiwan was used. The results show that contour maps of Cu concentrations generated by the SIS realizations exhausted all the spatial patterns of Cu concentrations without the smoothing effect found when using the kriging method. Based on the SIS realizations, the local uncertainty of Cu concentrations at a specific location of x', refers to the probability of the Cu concentration z(x') being higher than the defined threshold level of contamination (z(c)). This can be written as Prob(SIS)[z(x')>z(c)], representing the probability of contamination. The probability map of Prob(SIS)[z(x')>z(c)] can then be used for delineating contaminated areas. In addition, the multi-location uncertainty of an area A,delineated as contaminated based on the probability map of Prob(SIS)[z(x')>z(c)], can be calculated to assess the reliability of delineation. Multi-location uncertainty refers to the probability of Cu concentrations in several locations, x'(1), x'(2), em leader, x'(m,) in the area A, being higher than the threshold (z(c)) as denoted by Prob(SIS)[z(x'(1))>z(c), z(x'(2))>z(c), em leader, andz(x'(m))>z(c)] or Prob(SIS)[z(A)>z(c)]. The multi-location uncertainty Prob(SIS)[z(A)>z(c)], obtained from the SIS, can be used to assess the reliability of delineation for regions suspected of contamination, (A), which has been delineated as contaminated. Reliance on this information facilitates the decision making process in determining which areas are contaminated and require cleanup action.  相似文献   

6.
中国主要湖泊营养氮沉降临界负荷的研究   总被引:27,自引:0,他引:27  
水体营养氮沉降临界负荷是不致使水体产生富营养化的最高氮沉降量。文中探讨了一种依据湖泊氮质量平衡原理计算营养氮沉降临界负荷的方法。用该方法计算表明 ,我国主要湖泊的营养氮沉降临界负荷比较低 ,大部分小于 1keq· hm- 1 · a- 1 ,部分已为目前的氮沉降量或者两者相当接近 ,意味着只接受氮沉降也能导致这些湖泊产生富营养化。但实际统计结果表明 ,氮沉降在导致受工农业生产和生活影响很大的城市和郊区湖泊的水质富营养化的所有氮污染源中所占比例较低 ,而其它来源的氮输入如河道入湖、工业生活废水和农田径流等才是导致富营养化的最主要因素 ,它们的量已远远超过了这些水体可随最高允许氮负荷。因此 ,对控制这些湖泊的水质富营养化而言 ,控制氮沉降并不是目前最紧迫的任务 ,而其它人为污染源的控制才是最急需的。但氮沉降临界负荷在湖泊富营养化的中长远控制中仍具有十分重要的意义。  相似文献   

7.
In the analytical analysis the measurement uncertainty is a quantitative indicator of the confidence describing the range around a reported or experimental result within which the true value can be expected. Several approaches can be used to estimate the measurement uncertainty associated to the analysis of pesticide residues: a) the top-down, the estimation can be referred to default values; b) the bottom-up the estimation is related to the uncertainty sources. Concerning the bottom-up approach, the following contributions have been investigated: weight of sample, calibration solutions, final volume of sample and intermediate repeatability studies. The commodity/residue combination selected in this study was celery/tau-fluvalinate pesticide. Tau-fluvalinate is a broad-spectrum insecticide in the pyrethroid class of pesticides. The Maximum Residue Limit (MRL) of tau-fluvalinate in celery has been set at 0.01 mg/kg. The tau- Fluvalinate showed two chromatographic peaks. Since the individual standards are not available, the two peaks were integrated separately and the instrumental responses were added. The total residue was calculated on the basis of resulted peaks. The present work aims to compare the uncertainty estimated by experimental data using repeated analysis (n = 12) of a real sample and a spiked sample. The relative expanded uncertainty for two data set, incurred and spiked, was 22 % and 20 %, respectively. No differences were observed from repeated determinations of real samples and spiked samples.  相似文献   

8.
A simple method for the extraction and determination of adenosine 5′-triphosphate (ATP) in soil is described. ATP was extracted by stirring with dimethyl sulphoxide (DMSO), followed by adding 0.01 M trisodium phosphate (Na3PO4) buffer solution for a further dispersion. The ATP content was quantitatively measured by luciferin-luciferase system employing a standard addition technique. The method was most efficient in comparison with 7 other extraction procedures. The recoveries of ATP in spiked soil were found to be approximately 100 %. ATP contents in 16 selected soils were in ranges of 0.76±0.05 – 7.79±0.83 μg/g (dry weight). A significant correlation between ATP amounts and biomasses in these soils was also observed.  相似文献   

9.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

10.
In order to provide residue data for refining the estimated sampling uncertainty, a coordinated research program was initiated for performing field studies on residues in individual items of leafy vegetables, small and large crops. The trials were carried out in 13 countries with 3 small fruits, 5 large crops, 2 medium/large crops and 3 leafy vegetables. The 25 pesticide active ingredients applied represented the dicarboximide (3), organophosphorus (8), synthetic pyrethroids (5), phthalimides (2), organochlorine (1) and other types of pesticides (6). In addition, 11 supervised field trials were performed in grapes and lettuce by the pesticide manufacturers, and their results were provided for evaluation. The studies represented actual agriculture practice around the world, and provide reliable data for estimation of sampling uncertainty. Based on the 12346 residue data, the best estimate for the relative sampling uncertainty for composite samples, assuming sample size of 10 for small crops and leafy vegetables and 5 for large crops, with 95% confidence limits in brackets are: small commodities: 0.25 (0.20–0.29); Brassica leafy vegetables: 0.20 (0.16–0.24); large commodities: 0.33 (0.29–0.38).  相似文献   

11.
In common with other member states of UN-ECE, maps of critical loads of transboundary air pollutants are to be produced in the UK for different receptor (waters, soils and vegetation) types. These maps will be used as a tool for assessing different deposition scenarios with proposed pollution abatement strategies. This paper presents the methodology, results and a discussion of the principles used in applying critical loads of sulphur as a pilot study for soils in northern England. For the study area, critical load classes for soils vary with geology, drift cover and slope/elevation. The area of soils in which the critical load is exceeded varies significantly according to the type of deposition data utilised.  相似文献   

12.
Investigations have shown that near- and mid-infrared reflectance spectroscopy can accurately determine organic-C in soil. Efforts have also demonstrated that both can differentiate between organic and inorganic-C in soils, but the mid-infrared produces more accurate calibrations. Nevertheless, the greatest benefit would come with in situ determinations where factors such as particle size, sample heterogeneity and moisture can be important. While the variations in large (> 20 mesh) particle size can adversely effect calibration accuracy, efforts have demonstrated that the scanning of larger amounts of sample can overcome this, but the effects of moisture have not been fully explored. While under in situ conditions C distribution and sample heterogeneity are a problem for any analytical method, the rapid analysis possible with spectroscopic techniques will allow many more samples to be analyzed. In conclusion, near- and mid-infrared spectroscopy have great potential for providing the C values needed for C sequestration studies.  相似文献   

13.
14.
15.
The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.  相似文献   

16.
Bergvall M  Grip H  Sjöström J  Laudon H 《Ambio》2007,36(6):512-519
Contaminant transport is generally considered to be a key factor when assessing and classifying the environmental risk of polluted areas. In the study presented here, a steady-state approach was applied to obtain estimates of the transit time and concentration of the pesticide metabolite BAM (2,6-dichlorobenzoamide) at a site where it is contaminating a municipal drinking water supply. A Monte Carlo simulation technique was used to quantify the uncertainty of the results and to evaluate the sensitivity of the used parameters. The adopted approach yielded an estimated median transit time of 10 y for the BAM transport from the polluted site to the water supply. Soil organic carbon content in the unsaturated zone and the hydraulic conductivity in the saturated zone explained 44% and 23% of the uncertainty in the transit time estimate, respectively. The sensitivity analysis showed that the dilution factor due to regional groundwater flow and the soil organic carbon content at the polluted site explained 53% and 31% of the uncertainty of concentration estimates, respectively. In conclusion, the adopted steady-state approach can be used to obtain reliable first estimates of transit time and concentration, but to improve concentration predictions of degrading contaminants, a dynamic model is probably required.  相似文献   

17.
Organic matter (OM) plays a key role in microbial response to soil metal contamination, yet little is known about how the composition of the OM affects this response in Mediterranean calcareous agricultural soils. A set of Mediterranean soils, with different contents and compositions of OM and carbonate and fine mineral fractions, was spiked with a mixture of Cd, Cu, Pb, and Zn and incubated for 12 months for aging. Microbial (Biolog Ecoplates) and enzyme activities (dehydrogenase, DHA; β-galactosidase, BGAL; phosphatase, PHOS; and urease, URE) were assessed and related to metal availability and soil physicochemical parameters. All enzyme activities decreased significantly with metal contamination: 36–68 % (DHA), 24–85 % (BGAL), 22–72 % (PHOS), and 14–84 % (URE) inhibitions. Similarly, catabolic activity was negatively affected, especially phenol catabolism (~86 % compared to 25–55 % inhibition for the rest of the substrates). Catabolic and DHA activities were negatively correlated with ethylenediaminetetraacetic acid (EDTA)-extractable Cd and Pb, but positively with CaCl2, NaNO3, and DTPA-extractable Cu and Zn. Soluble OM (water- and hot-water-soluble organic C) was positively related to enzyme and catabolic activities. Recalcitrant OM and fine mineral fractions were positively related to BGAL and PHOS. Conversely, catabolic activity was negatively related to clay and positively to silt and labile OM. Results indicate that the microbial response to metal contamination is highly affected by texture and OM composition.  相似文献   

18.
In laboratory incubation studies with three soils of varying physicochemical characteristics, phorate was more persistent in nonflooded (60% water holding capacity) soils than in flooded soils. Phorate sulphoxide was recovered as the only metabolite of phorate in nonflooded soils while three metabolites (diethyl dithiophosphate, triethyl dithiophosphate and an unidentified metabolite) were formed in flooded soils. Study indicates that in nonflooded soils phorate is degraded via oxidation while in flooded soils hydrolysis is the major degradation process. Degradation of phorate was accelerated by an increase in incubation temperature. Preexposure or repeated application of soils to phorate slightly decreased the persistence of phorate or its metabolites. Decreased persistence of phorate and its metabolites formed in nonsterile soils compared to sterile soils suggested the role of microorganisms in their transformation.  相似文献   

19.
Equilibrium measurements were carried out with the herbicide isoproturon on natural adsorbents (brown forest-, chernozem-, sandy soils and quartz) in different buffered media (pH 5, 7, 8 phosphate buffer). Adsorption isotherms were fitted by a multi-step adsorption equation providing numerical information used in the environmental propagation models and risk assessment works. In the adsorption of the slightly polar isoproturon the dissolved organic matter of the soil and the pH play an important role. At molecular level, results are interpreted by taking into consideration the hydrophobic interaction and the formation of hydrogen bonds between the surface and the solute. The observed adsorption behavior indicates that the organic matter content of the soils and its soluble fulvic acid, alkaline soluble humic acid and insoluble humin fractions were considerable different. The chernozem soil containing the highest amount of insoluble organic fraction proved to be a very efficient adsorbent. The brown forest and the sandy soils exhibit rather similar adsorbent properties but at pH 7 the latter containing more fulvic acid adsorbs less isoproturon due to the enhanced solubility of the soil organic matter. In alkaline conditions the negatively charged solute and the surface repel each other and the hydrophobic interactions are also weaker than in neutral media.  相似文献   

20.
In the present laboratory study, persistence of imidacloprid (IMI) as a function of initial insecticide concentration and soil properties in two Croatian soils (Krk sandy clay and Istria clay soils) was studied and described mathematically. Upon fitting the obtained experimental data for the higher concentration level (5 mg/kg) to mathematical models, statistical parameters (R 2, scaled root mean squared error and χ 2 error) indicated that the single first-order kinetics model provided the best prediction of IMI degradation in the Krk sandy clay soil, while in the Istria clay soil biphasic degradation was observed. At the lower concentration level (0.5 mg/kg), the biphasic models Gustafson and Holden models as well as the first-order double exponential model fitted the best experimental data in both soils. The disappearance time (DT50) values estimated by the single first-order double exponential model (from 50 to 132 days) proved that IMI can be categorized as a moderately persistent pesticide. In the Krk sandy clay soil, resulting DT50 values tended to increase with an increase of initial IMI concentration, while in the Istria clay soil, IMI persistence did not depend on the concentration. Organic matter of both experimental soils provided an accelerating effect on the degradation rate. The logistic model demonstrated that the effect of microbial activity was not the most important parameter for the biodegradation of IMI in the Istria clay soil, where IMI degradation could be dominated by chemical processes, such as chemical hydrolysis. The results pointed that mathematical modeling could be considered as the most convenient tool for predicting IMI persistence and contributes to the establishment of adequate monitoring of IMI residues in contaminated soil. Furthermore, IMI usage should be strictly controlled, especially in soils with low organic matter content where the risk of soil and groundwater contamination is much higher due to its longer persistence and consequent leaching and/or moving from soil surface prior to its degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号