首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

2.
Data on phytoplankton primary production, biomass, and species composition were collected during a 5 yr (1985–1989) study of Auke Bay, Alaska. The data were used to examine the interannual differences in the timing, duration, and magnitude of the spring phytoplankton blooms during each year and to relate these differences to interannual variations in weather patterns. Within any given year, a pre-bloom phase was characterized by low available light, low rates of primary production, low biomass, and predominantly small (<10µm) diatoms. During the primary bloom, integrated production rates rose to 4 to 4.5 g C m–2 d–1, and integrated biomass levels reached 415 to 972 mg chlorophyll m–2. Primary blooms were usually dominated by large diatoms (Thalassiosira spp.), and in a single year (1989) byChaetoceros spp. The primary blooms terminated upon nutrient depletion in the euphotic zone. Secondary blooms, triggered by nutrient resupply from below, occurred sporadically after the primary bloom and accounted for 4 to 31% of total spring production. The date of initiation and the duration of the primary bloom varied little from year to year (standard deviation 3 and 5 d, respectively). Seasonal production rates and biomass levels varied interannually by a factor of 2 to 3. In contrast, intra-annual variations of more than an order of magnitude, especially in biomass, occurred over periods as short as 10 d. These large variations over short time periods indicate the importance of synchronous timing between spring blooms and the production of larval fish and shellfish, which depend on an appropriate and adequate food supply for growth and survival. Parameters describing primary production (e.g. peak daily production, mean daily production, and total production during the primary bloom and the entire season) exhibited little interannual variation (coefficient of variation, CV = 10 to 19%), but a large degree of intra-annual variation (CV = 77 to 116%). Similarly, interannual variations in biomass (peak chlorophyll, mean chlorophyll) were also lower (CV = 20 to 33%) than intra-annual variations (CV = 85 to 120%).  相似文献   

3.
An annual pigment budget was constructed for Dabob Bay, Washington (USA) by comparing the downward vertical loss of phytoplankton pigments (chlorophyll and pheopigments) to the production of chlorophyll within the euphotic zone. The vertical flux of pigments was measured with sediment traps deployed at intervals of 1 to 6 wk over a 2.5 yr period yielding 763 d of trap exposure (28 November 1978–16 June 1981). The production rate of chlorophyll was calculated from measurements of algal specific growth rates, chlorophyll (chl) crops, primary production (as carbon) and appropriate C: chl ratios. Sixty one to 77% of the annual chlorophyll production was accounted for by the vertical flux of pheopigments resulting from herbivorous zooplankton grazing (macrozooplankton). Algal sinking, represented by downward chlorophyll flux, accounted for only 5 to 6% of the annual chlorophyll production. The remaining fraction of chlorophyll production was estimated to be consumed by small herbivores (microzooplankton), whose fecal material contributes to the suspended pool of pheopigments found in the euphotic zone. The suspended pheopigments are continuously removed by photodegradation. In Dabob Bay, the major process controlling phytoplankton abundance is zooplankton grazing and it appears that the ultimate fate of most phytoplankton is to be consumed by herbivores.  相似文献   

4.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

5.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

6.
The distribution, feeding and oxygen consumption of Calanus sinicus were studied in August 2001 on a transect across Yellow Sea Cold Bottom Waters (YSCBW) and two additional transects nearby. The distribution of C. sinicus adults and copepodites stage CV appeared to be well correlated with water temperature. They tended to concentrate in the YSCBW (>10,000 ind. m–2) to avoid high surface temperature. Gut pigment contents varied from 0.44 to 2.53 ng chlorophyll a equivalents (chl a equiv.) ind.–1 for adults, and from 0.24 to 2.24 ng chl a equiv. ind.–1 for CV copepodites. We found no relationship between gut pigment contents and the ambient chl a concentrations. Although the gut evacuation rate constants are consistent with those measured for other copepods, their low gut pigment contents meant an estimated daily herbivorous ingestion of <3% of body carbon in the YSCBW and <10% outside the YSCBW. However, based on estimates of clearance rates, C. sinicus feeds actively whether in the YSCBW or not, so the low ingestion rates probably reflect shortage of food. Oxygen consumption rates of C. sinicus ranged from 0.21 to 0.84 l O2 ind.–1 h–1, with high rates often associated with high temperature. From the oxygen consumption rates, daily loss of body carbon was estimated to be 4.0–13.7%, which exceeds our estimates of their carbon ingestion rates. C. sinicus was probably not in diapause, either within or outside the YSCBW, but this cold-water layer provides C. sinicus with a refuge to live through the hot, low-food summer.Communicated by T. Ikeda, Hakodate  相似文献   

7.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
Reproductively activeCalanus hyperboreus (Krøyer) andC. glacialis Jaschnov were captured in the upper 100 m of Fram Strait (77° to 79°N) in late winter 1987. There was no evidence of a phytoplankton bloom; chlorophylla concentrations were uniformly low (<0.1 mg m–3), and nitrate concentrations were uniformly high (>11.3 mg-at m–3). Gut-fullness measurements indicated that females were ingesting very little. The maturation state of gonads of bothC. hyperboreus andC. glacialis indicated that 75% of females were in a ripe condition consistent with observed egg laying. The lipid content of females laying eggs was reduced in both species compared to that of females not laying eggs. InC. hyperboreus the reduction was 39% and inC. glacialis it was 44%. All the evidence suggests that bothC. hyperboreus andC. glacialis were laying eggs in late winter by using lipids stored previously; they were not relying on ambient concentrations of phytoplankton. The daily rate of egg laying byC. glacialis using lipids in late winter exceeded the rate reported for summer when ambient food supplies have been shown to be necessary. It is suggested that individuals, spawned well in advance of the spring bloom of phytoplankton, may comprise a major portion of the annual recruitment to the entire population ofC. glacialis in this area, and that their life cycle can be completed within 1 yr. NeitherMetridia longa (Lubbock) norC. finmarchicus (Gunnerus) laid eggs during this study.  相似文献   

9.
Size appears to be an important parameter in ecological processes. All physiological processes vary with body size ranging from small microorganisms to higher mammals. In this model, five state variables — phosphorus, detritus, phytoplankton, zooplankton and fish are considered. We study the implications of body sizes of phytoplankton and zooplankton for total system dynamics by optimizing exergy as a goal function for system performance indicator. The rates of different sub-processes of phytoplankton and zooplankton are calculated, by means of allometric relationships of their body sizes. We run the model with different combinations of body sizes of phytoplankton and zooplankton and observe the overall biomass of phytoplankton, zooplankton and fish. The highest exergy values in different combinations of phytoplankton and zooplankton size indicate the maximum biomass of fish with relative proportions of phytoplankton and zooplankton. We also test the effect of phosphorus input conditions corresponding to oligotrophic, mesotrophic, eutrophic system on its dynamics. The average exergy to be maximized over phytoplankton and zooplankton size was computed when the system reached a steady state. Since this state is often a limit cycle, and the exergy copies this behaviour, we averaged the exergy computed for 365 days (duration of 1 year) in the stable period of the run. In mesotrophic condition, maximum fish biomass with relative proportional ratio of phytoplankton, zooplankton is recorded for phytoplankton size class 3.12 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume). In oligotrophic condition the highest average exergy is obtained in between phytoplankton size 1.48 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume), whereas in eutrophic condition the result shows the highest exergy in the combination of phytoplankton size 5.25 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume).  相似文献   

10.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

11.
Release of14C-labelled carbon dioxide from uniformly labelled cells was used to measure respiration by individual ciliates in 2-h incubations in 1989 and 1990. In a strictly heterotrophic ciliate,Strobilidium spiralis (Leegaard, 1915), release of labelled carbon dioxide was equivalent to ca. 2.8% of cell C h–1 at 20°C, and there was no difference between rates in the dark and light. In the chloroplast-retaining ciliatesLaboea strobila Lohmann, 1908,Strombidium conicum (Lohmann, 1908) Wulff, 1919 andStrombidium capitatum (Leegaard, 1915) Kahl, 1932, release of labelled carbon dioxide was less in the light than in the dark in experiments done at 15°C. InL. strobila release of radiolabel as carbon dioxide was equivalent to ca. 2.4% of cell C h–1 in the dark but ca. 1% at 50µE m–2 s–1, an irradiance limiting to photosynthesis. InS. conicum release of radiolabel as carbon dioxide was equivalent to ca. 4.4% of cell C h–1 in the dark, but at an irradiance saturating to photosynthesis (250 to 300µE m–2 s–1) there was no detectable release of labelled carbon dioxide. InS. capitatum release of radiolabel as carbon dioxide was equivalent to ca. 4.3% of cell C h–1 in the dark but at an irradiance saturating to photosynthesis was ca. 2.4% of cell C h–1. These data, combined with data from photosynthetic uptake experiments, indicate that14C uptake underestimates the total benefit of photosynthesis by 50% or more in chloroplastretaining ciliates.Contribution no. 7510 from the Woods Hole Oceanographic Institution  相似文献   

12.
Vertical distribution, chlorophylla (chla) and phaeopigment concentrations in the gut, and natural nitrogen isotope ratio ( 15N) were investigated for pelagic amphipodsThemisto japonica (Bovallius) collected from the Sea of Japan in July 1987. Differences in diel vertical migration behavior were clearly observed between small and largeT. japonica. Many small (<5 mm body length) amphipods appeared in the phytoplankton-rich shallow layers. Their gut pigment concentrations were higher (mean 0.52 ± 0.15µg chla g–1 amphipod) than those of large amphipods (mean 0.33±0.14µg g–1); this implies that the amphipods fed on a large amount of phytoplankton during the early stage of life. The 15N values of small amphipods were lower (5.7 to 6.3) than those of large amphipods (6.8 to 11.7), reflecting the lower trophic level of small amphipods compared to large ones. The 15N values for small amphipods were similar to those of herbivorous zooplankton. The amphipods' feeding behavior thus changes from herbivorous to carnivorous as they grow.  相似文献   

13.
S. Y. Lee 《Marine Biology》1990,106(3):453-463
Net primary productivity and organic matter flow of a mangrove-dominated wetland was estimated by following production and detritus dynamics in a tidal pond in north west Hong Kong in 1986–1988 (9.1 ha). Total productivity was 12.47 t dry wt ha–1 yr–1, of which >90% was from emergent macrophytes (the mangroveKandelia candel and the reedPhragmites communis). High turbidity and high summer temperatures probably limited respective production by phytoplankton and benthic macroalgae (dominated byEnteromorpha crinata). Despite the high total productivity, little detritus was exported from the emergent macrophyte stands, due to the low inundation frequency. This created a net water column carbon deficit which was provided for by the high organic matter import (mean = 4.42 g ash free dry wt m–2 d–1) from the incoming water. This same sediment and particulate organic carbon input giving a high accretion rate of 1.7 cm yr–1 was probably also the force behind progressive dis-coupling of emergent macrophyte production from water column consumers. This resulted in a tendency to retain production in the emergent macrophyte stands while the water column community increasingly relied on allochthonous carbon. This shift from a net exporter to a net importer of carbon in landward wetlands is probably characteristic of the transition into nutrient-conservative terrestrial systems.  相似文献   

14.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

15.
A new method for estimating phytoplankton growth rates and carbon biomass   总被引:2,自引:0,他引:2  
A new method is described for the determination of phytoplankton growth rates and carbon biomass. This procedure is easy to apply and utilizes the labeling of chlorophyll a (chl a) with 14C. Pure chl a is isolated using two-way thin-layer chromatography, and the specific activity of chl a carbon is determined. Data from laboratory cultures indicate that the specific activity of chl a carbon becomes nearly equal to that of total phytoplankton carbon in incubations lasting 6 to 12 h and can be used to calculate phytoplankton growth rates and carbon biomass. Application of the method to the phytoplankton community in an eutrophic estuary in Hawaii indicates that the cells are growing with a doubling time of about 2 d and that about 85% of the particulate carbon consists of phytoplankton carbon.  相似文献   

16.
Growth and grazing loss rates of naturalPhaeocystis sp. single cells were measured using a seawater dilution technique. Measurements were performed during an intensePhaeocystis sp. bloom in the North Sea between 19 April and 5 May 1988. Experimental results yielded rapid carbon turnover rates. Population growth rates varied from 0.033 to 0.098 h–1, grazing loss rates from 0.037 to 0.174 h–1. From measured growth rates, average doubling rages of 1.3 doublings d–1 were calculated. The growth rates would have resulted in maximum carbon production rates of 146 mg C m–3 d–1. Grazing rates increased in the course of the bloom and exceeded growth rates at the end. Grazing loss was caused primarily by microzooplankton feeding. Ciliates and heterotrophic dinoflagellates were identified as the major potential consumers of single cells ofPhaeocystis sp. at the beginning of the bloom. The grazing impact of larger microzooplankton species appeared to increase during the progressing bloom.  相似文献   

17.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

18.
The in situ grazing rate and nutritional condition of copepods were studied during October/November 1985, by analyzing gut fluorescence (feeding), body size and lipid composition (nutritional state), and electron transport system (ETS) activity (respiration rate) of copepods from surface-and deep-water in Kosterfjorden on the Swedish west coast. These parameters were related to the physical and biological environment, as defined by light, hydrography, autotrophic and bacterial production and seston in the water column. The results show a gradual build-up of the autumn phytoplankton bloom in the uppermost meters, with a peak in total autotrophic production in mid October of ca 550 mg C m–2 d–1, and a bacterial net production corresponding to 15% of this. Phytoplankton exudates made up, on average, 47% of the primary production and more than 50% of this was utilized by the bacteria. Copepods occurring in the surface-water exhibited grazing rates corresponding to between 11 and 18% of their body C d–1 and potential growth rates of 0 to 9% d–1. Copepod populations in the surface water were composed of individuals with higher average body-weight and lower lipid-proportion than those from the deep-water.Calanus finmarchicus in the deep-water showed characters indicating diapause condition, while this was not observed forAcartia clausi. Differences in lipid content and composition indicate thatC. finmarchicus, Pseudocalanus sp. andA. clausi represent three successive points on a scale of tolerance for fluctuations in the food environment. Adult femaleMetridia longa was the only one among seven species/stages of copepods in the deep-water ( 50 m depth) that contained phytoplankton pigments.Study performed through Tjärnö Marine Biological Laboratory, University of Göteborg, S-452 00 Strömstad, Sweden  相似文献   

19.
Growth rates of summer (June–September) phytoplankton assemblages and constituent species were measured in 30 diffusion culture experiments. Size-fractionated (<10 m) phytoplankton assemblages were incubated in situ or under simulated in-situ conditions in outdoor tanks connected to a running seawater system. Doubling rates of important species and groups (such as microflagellates) were compared to community biomass doubling rates estimated from 14C uptake and changes in chlorophyll a concentrations. Division rates of dominant diatom species generally equalled or exceeded community biomass doubling rates, while those of flagellates and non-motile ultraplankters were slower. Maximum division rates of sixteen common diatom species exceeded 2.1 divisions d-1, while nine had maximum division rates in excess of 3 d-1. Mean division rates of 12 diatom species exceeded 1 d-1. Maximum division rates of flagellated species, uncharacterized microflagellates and non-motile ultraplankton assemblages were 2.1, 1.5 and 1.4 d-1, respectively. Microflagellate and non-motile ultraplankton assemblage doubling rates were less than 0.5 d-1 in over half of all growth experiments.  相似文献   

20.
The production, release, and subsequent consumption of coral mucus on reefs has been portrayed as a potential pathway for the transfer of coral and zooxanthellae production to other reef organisms. However, reported mucus production rates and analyses of nutritional value vary widely. Poritid corals provide a test system to measure mucus production because they produce mucous sheets which can be collected quantitatively. Fluid mucus and mucous sheets were collected fromPorites astreoides, P. furcata, P. divaricata during 1986 and 1987 on reefs in the San Blas Islands, Panama, La Parguera, Puerto Rico and the Florida Keys, USA. Mucus samples were collected from Indo-pacific poritids (P. australiensis, P. lutea, P. lobata, andP. murrayensis) on the Great Barrier Reef during 1985. Biochemical analyses of the fluid mucous secretions, and the derivative mucous sheet, indicate that the mucus is primarily a carbohydrateprotein complex.Porites fluid mucus had a mean caloric content of 4.7 cal mg–1 ash-free dry weight (AFDW), while mucous sheets contained 3.5 cal mg–1 AFDW. Sixty-eight percent of the mucous sheet was ash, while fluid mucus was 22% ash. The high ash and low organic contents suggest that mucous sheets have a low nutritional value. C:N ratios varied (range 6.9 to 13.7 for fluid mucus, and 4.8 to 5.9 for mucous sheets), but were similar to typical C:N ratios for marine organisms. Bacterial numbers and chlorophyll a concentrations were higher on mucous sheets than in the surrounding water. Although bacteria aggregate on mucous sheets, bacteria accounted for less than 0.1% of the carbon and nitrogen content of the mucous sheet. Lower C:N ratios in aged mucus, i.e. mucous sheets versus fluid mucus, were attributed to a loss of carbon rather than an increase in nitrogen. Mucous sheet production accounts for a small proportion (< 2% gross photosynthesis) of published values for coral production. In the San Blas Islands, Panama,P. astreoides produced mucous sheets at a rate of 1.5 g C m–2 y–1 and 0.3 g N m–2 y–1.P. astreoides andP. furcata produced mucous sheets with a lunar periodicity and may provide approximately monthly pulses of carbon and nitrogen to the reef food-web. However, the low annual production rates suggest that mucous sheets make a small contribution to overall energy flow on coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号