首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Abstract: Tropical pastures present multiple barriers to tree regeneration and restoration. Relict trees serve as “regeneration foci” because they ameliorate the soil microclimate and serve as safe spots for dispersers. Here, we describe another mechanism by which remnant trees may facilitate pasture regeneration: the presence of seed banks in the canopy soil that accumulates from decomposing epiphytes within the crowns of mature remnant trees in tropical cloud forest pastures. We compared seed banks of canopy soils (histosols derived from fallen leaves, fruits, flower, and twigs of host trees and epiphytes, dead bryophytes, bark, detritus, dead animals, and microorganisms, and dust that accumulate on trunks and the upper surfaces of large branches) in pastures, canopy soils in primary forest trees, and soil on the forest floor in Monteverde, Costa Rica. There were 5211 epiphytic and terrestrial plant seeds in the three habitats. All habitats were dominated by seeds in a relatively small number of plant families, most of which were primarily woody, animal pollinated, and animal dispersed. The density of seeds on the forest floor was greater than seed density in either pasture‐canopy or forest‐canopy soils; the latter two did not differ. Eight species in 44 families and 61 genera from all of the habitats were tallied. There were 37 species in the pasture‐canopy soil, 33 in the forest‐canopy soil, and 57 on the forest floor. Eleven species were common to all habitats. The mean species richness in the pasture canopy was significantly higher than the forest canopy (F =83.38; p < 0.02). Nonmetric multidimensional scaling ordination revealed that the communities were distinct. Greenhouse experiments verified that many of these seeds were viable, with 29 taxa germinating (23 taxa in pruned mats [mimic of exposed conditions] and 16 taxa in control mats [intact conditions]) within 2 months of observation. Nearly half the species that germinated were characteristic of primary forests (primary forest samples, 19%; pasture samples, 29%). This supports the idea that canopy seed banks of pasture trees can function as time capsules by providing propagules that are removed in both space and time from the primary forest. Their presence may enhance the ability of pastures to regenerate more quickly, reinforcing the importance of trees in agricultural settings.  相似文献   

2.
Abstract: Habitat fragmentation has reduced the richness of native species of forests in northeastern North America. Despite recent large-scale increases in forest cover, studies indicate that understory herbaceous plant communities may take many decades to recover. We studied recovery patterns of vegetation following up to 35 years of forest regeneration in restored former cottage and road sites at Point Pelée National Park, Ontario, Canada, to assess the vulnerability of the understory herbaceous species. Overall, there were no significant differences in the diversity of native species between restored and relatively undisturbed reference sites. There was, however, significant among-site variation in the composition of the native species component of these plant communities. When only restored sites were examined, variation in native species composition was associated with time since site restoration, soil moisture, canopy cover, and distance to continuous forest. Native species were assigned vulnerability rankings according to their relative occurrence in reference and restored sites. Spring-flowering herbs, with ant- or gravity-dispersed seeds, were absent from restored sites and were defined as highly vulnerable. In contrast, summer- and fall-flowering herbs, with vertebrate- and wind-dispersed seeds, dominated restored sites and were less vulnerable. Species of low and intermediate vulnerability had colonized restored sites successfully, and the latter should function as indicators of recovery. In contrast, species with high vulnerability rankings had not recovered at all and, because of their limited dispersal ranges, may recolonize restored sites only if they are actively reintroduced.  相似文献   

3.
Abstract: We assessed the potential effect of frugivore extinctions on forest regeneration in the North Negros Forest Reserve, a forest fragment that is one of the last remaining wet tropical rainforest ecosystems in the biogeographic region of the central Philippine Islands. We evaluated foraging observations of 19 species of birds, fruit bats, and other mammals in three successional habitats and identified tree species that are potentially at risk because their seeds are dispersed by frugivores that are seriously endangered. The relative abundance of zoochorous trees in this forest community was exceptionally high (80%), suggesting that the process of forest regeneration will change drastically if endangered frugivores are hunted to extinction. We grouped 45 tree species as early-, mid-, or late-successional species based on their population structure and we demonstrated that early-successional tree species were visited by a wide spectrum of frugivores, whereas mid- and late-successional species were visited mostly by hornbills (Bucerotidae) and fruit pigeons (Columbidae). Late-successional tree species were most specialized with respect to dispersers and could therefore be susceptible to extinction. We recommend tree species that could be useful for assisted natural regeneration projects in the reserve because they are visited by a variety of frugivores. Of those, we recommend early-successional trees for open-field plantations and mid-successional tree species for enrichment plantings.  相似文献   

4.
Lemurs and the Regeneration of Dry Deciduous Forest in Madagascar   总被引:2,自引:0,他引:2  
Abstract: We sought to assess the role of lemurs for seed dispersal in the dry deciduous forest of western Madagascar and the possible consequences of the demise of lemurs for forest regeneration. Forest regeneration was studied in eight plots in two large blocks of primary forest and in seven fragments of primary forest (1 plot per fragment). In 4 of the 15 study plots, the abundance of saplings was negatively and significantly correlated ( p < 0.05) with the abundance of mature individuals of the same tree species. In another 10 study plots there were negative correlations, although these were not significant on the community level. Second-order statistics were significant with p < 0.001 and indicated that seed dispersal away from the parent trees was important for successful establishment of saplings. Apart from possibly the bush pig ( Potamochoerus larvatus ), only one vertebrate species of the dry forest, the brown lemur ( Eulemur fulvus ), ingested seeds> 11 mm long and passed them through its digestive tract unharmed. These results for lemurs were based on direct observations and fecal analyses. To evaluate the role of E. fulvus , we compared regeneration in forest plots with and without E. fulvus . In forest fragments without E. fulvus , fewer lemur-dispersed tree species regenerated than would be expected based on the presence of mature tree species that are lemur-dispersed ( p < 0.05). No such effect was seen in primary forests with E. fulvus or for trees whose seeds can also be dispersed by other vertebrates. Thus, regeneration of the dry deciduous forest of western Madagascar with the complete set of primary forest tree species seems to depend upon the presence of E. fulvus .  相似文献   

5.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future.  相似文献   

6.
森林土壤种子库研究进展   总被引:1,自引:0,他引:1  
杜有新  曾平生 《生态环境》2007,16(5):1557-1563
土壤种子库与物种多样性存在密切相关性,森林土壤种子库是植被天然更新的物质基础。文章阐述了森林土壤种子库的内涵、森林生态系统土壤种子库的基本特征及其主要研究方法,探讨了影响种子库的基本因素及当前极为关注的热点问题。在受损森林生态系统目标树种培养、植被群落快速恢复和生态系统科学管理等领域仍存在一些理论和实践急待解决的问题,如随着群落进展演替土壤种子库种子数量在增加而质量却在逐渐下降,面临如何解决生态系统健康稳定发育和物种多样性长期维持问题。文章认为今后应加强土壤种子库与生物多样性保护、防止外来物种入侵乡土物种利用及对全球变化的响应等领域的研究工作,以期为从事森林土壤种子库研究和退化森林植被群落恢复实践提供理论指导。  相似文献   

7.
土壤种子库研究的几个热点问题   总被引:20,自引:0,他引:20  
王俊  白瑜 《生态环境》2006,15(6):1372-1379
土壤种子库是指存在于土壤表层凋落物和土壤中全部活性种子的总和。土壤中有活性的种子是植物群落的一部分,是新植株的来源。土壤种子库可以分为瞬时土壤种子库和持久土壤种子库。随着群落生态学的发展,土壤种子库的研究已经成为植物生态学重要的一部分,研究内容主要包括:(1)土壤种子库的组成和分布;(2)土壤种子库的动态;(3)地上植被与土壤种子库的关系;(4)干扰对土壤种子库的作用;(5)土壤种子库在生态恢复中的作用。文章在对目前土壤种子库的研究方法、主要研究内容方面总结的基础上,认为土壤种子库在合适的干扰作用下对退化生态系统的恢复以及植被更新发挥重要的作用,同时需进一步加强对这一过程中种子萌发、幼苗建立限制因素的研究。  相似文献   

8.
Tropical forest recovery in pastures is slowed by a number of biotic and abiotic factors, including a lack of adequate seed dispersal and harsh microclimatic extremes. Accordingly, methods to accelerate forest recovery must address multiple impediments. Here, we evaluated the ability of "tree islands" to serve as "recruitment foci" in a two-year study at three sites in northern Honduras. Islands of three sizes (64, 16, and 4 m2) and at two distances to secondary forest (20 and 50 m) were created by planting 2 m tall vegetative stakes of two native species: Gliricidia sepium (Fabaceae) and Bursera simaruba (Burseraceae), each in monoculture. Open-pasture "islands" of equal sizes served as controls. Tree islands reduced temperature and light (PAR) extremes as compared to open pasture, creating a microenvironment more favorable to seedling establishment. Seed-dispersing birds (quantified at one site only) showed an overwhelming preference for islands; 160 visits were recorded to islands compared with one visit to open pasture. Additionally, frugivores visited large islands more often, and for longer time periods, than small islands, thereby increasing the likelihood of a dispersal event there. In total, 144 140 seeds belonging to 186 species were collected in islands; more than 80% were grasses. Tree islands increased zoochorous tree seed rain; seed density and species richness were greater in tree islands than in open pasture, and large islands had greater seed density than smaller islands (Gliricidia only), suggesting that they are more effective for restoration. Distance to forest did not affect seed rain. A total of 543 seedlings and 41 species established in islands; > 85% were zoochorous. Seedling density did not differ among treatments (mean 0.2 seedlings/m2 for islands vs. 0.1 seedlings/m2 for pasture), although an increasing trend in tree islands over the course of two years suggests that seedling recruitment is accelerated there. Lastly, similar seedling densities were censused in the 1 m perimeter surrounding islands, suggesting that islands can expand outward into pasture. Planting vegetative stakes to create tree islands in pastures accelerates forest recovery by overcoming a number of impediments, and presents a simple, broadly applicable alternative for facilitating forest regeneration in abandoned pastures.  相似文献   

9.
土壤酸化对油松生长的影响   总被引:13,自引:0,他引:13  
褐色森林土酸化后,pH值下降,同时淋溶出大量Al离子和Mn离子。播种在酸化土壤中的油松种子萌发率稍有提高。生长在酸化土壤的油松苗的叶绿素含量,蒸腾强度,光合速率,相对生长率和干重均下降,原因是Al离子和Mn离子对油松的有毒害作用,并且阻止油松对钙离子和镁离子的吸收。表3参12  相似文献   

10.
Abstract:  In the Neotropics ongoing deforestation is producing open and heavily fragmented landscapes dominated by agriculture, mostly plantations and cattle pastures. After some time agriculture often becomes uneconomical and land is abandoned. Subsequent habitat regeneration may be slow because seed inputs are restricted by a lack of incentives—such as suitable roost sites—for seed dispersers to enter deforested areas. Increasing environmental awareness has fostered growing efforts to promote reforestation. Practical and cost-efficient methods for kick-starting forest regeneration are, however, lacking. We investigated whether artificial bat roosts for frugivorous bat species can attract these key seed dispersers to deforested areas, thereby increasing seed rain. We installed artificial bat roosts in a forest-pasture mosaic in the Costa Rican Atlantic lowlands and monitored bat colonization and seed dispersal. Colonization occurred within a few weeks of installation, and 10 species of bats occupied the artificial roosts. Five species of frugivorous or nectarivorous bats colonized artificial roosts permanently in both primary habitat and in deforested areas, in numbers similar to those found in natural roosts. Seed input around artificial roosts increased significantly. Sixty-nine different seed types, mostly of early-successional plant species, were transported by bats to artificial roosts in disturbed habitats. The installation of artificial bat roosts thus successfully attracted frugivorous bats and increased seed inputs into degraded sites. This method is likely to speed up early-vegetation succession, which in turn will attract additional seed dispersers, such as birds, and provide a microhabitat for seeds of mid- and late-successional plants. As well as supporting natural forest regeneration and bat conservation, this cost-efficient method can also increase environmental awareness among landowners.  相似文献   

11.
Effect of Edge Structure on the Flux of Species into Forest Interiors   总被引:13,自引:0,他引:13  
Abstract: A key goal of conservation biology is to prevent the spread of exotic species. Previous work on exotic invasion has two limitations: (1) the lack of a spatially explicit approach and (2) a primary focus on the net effect of invasion by examining invasive species already present in the community. We address these limitations by focusing on the arrival of a potential invader into a community and use a spatially explicit approach to quantify the flow of seeds from the surrounding landscape into the interior of a forest. We hypothesize that the structure of forest-edge vegetation influences how the edge mediates seed flux. To test our hypothesis, we experimentally altered vegetation structure within 20 m of the edge to create two edge treatments: thinned and intact. We quantified the flux of seeds moving into the forest interior across the two treatments. We used seed traps randomly arrayed on transects from 5 to 50 m into the forest. More seeds crossed the thinned treatment than crossed the intact treatment to reach the forest interior. In addition, seeds that crossed the thinned treatment dispersed farther into the forest than those that crossed the intact treatment. These results were consistent throughout the period of maximum autumn dispersal, including periods before and after leaf drop. Our results show that the structure of vegetation on the edge interacts with the flux of wind-dispersed seed across the edge. We demonstrated that an edge with intact vegetation can function as a physical barrier to seed dispersal. Therefore, the structure of vegetation on edges can influence the function of edges as barriers to seed flux into the forest interior.  相似文献   

12.
Despite their ubiquity, the role of ants in driving ecosystem processes both aboveground and belowground has been seldom explored, except within the nest. During 1995 we established 16 ant exclusion plots of approximately 1.1 x 1.1 m, together with paired control plots, in the understory layer of a boreal forest ecosystem in northern Sweden that supports high densities of the mound-forming ant Formica aquilonia, a red wood ant species of the Formica rufa group. Aboveground and belowground measurements were then made on destructively sampled subplots in 2001 and 2008, i.e., 6 and 13 years after set-up. While ant exclusion had no effect on total understory plant biomass, it did greatly increase the relative contribution of herbaceous species, most likely through preventing ants from removing their seeds. This in turn led to higher quality resources entering the belowground subsystem, which in turn stimulated soil microbial biomass and activity and the rates of loss of mass and carbon (C) and nitrogen (N) from litter in litterbags placed in the plots. This was accompanied by losses of approximately 15% of N and C stored in the humus on a per area basis. Ant exclusion also had some effects on foliar stable isotope ratios for both C and N, most probably as a consequence of greater soil fertility. Further, exclusion of ants had multitrophic effects on a microbe-nematode soil food web with three consumer trophic levels and after six years promoted the bacterial-based relative to the fungal-based energy channel in this food web. Our results point to a major role of red wood ants in determining forest floor vegetation and thereby exerting wide-ranging effects on belowground properties and processes. Given that the boreal forest occupies 11% of the Earth's terrestrial surface and stores more C than any other forest biome, our results suggest that this role of ants could potentially be of widespread significance for biogeochemical nutrient cycling, soil nutrient capital, and sequestration of belowground carbon.  相似文献   

13.
There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.  相似文献   

14.
Introduced Birds and the Fate of Hawaiian Rainforests   总被引:3,自引:0,他引:3  
Abstract:  The Hawaiian Islands have lost nearly all their native seed dispersers, but have gained many frugivorous birds and fleshy-fruited plants through introductions. Introduced birds may not only aid invasions of exotic plants but also may be the sole dispersers of native plants. We assessed seed dispersal at the ecotone between native- and exotic-dominated forests and quantified bird diets, seed rain from defecated seeds, and plant distributions. Introduced birds were the primary dispersers of native seeds into exotic-dominated forests, which may have enabled six native understory plant species to become reestablished. Some native plant species are now as common in exotic forest understory as they are in native forest. Introduced birds also dispersed seeds of two exotic plants into native forest, but dispersal was localized or establishment minimal. Seed rain of bird-dispersed seeds was extensive in both forests, totaling 724 seeds of 9 native species and 2 exotics with over 85% of the seeds coming from native plants. Without suitable native dispersers, most common understory plants in Hawaiian rainforests now depend on introduced birds for dispersal, and these introduced species may actually facilitate perpetuation, and perhaps in some cases restoration, of native forests. We emphasize, however, that restoration of native forests by seed dispersal from introduced birds, as seen in this study, depends on the existence of native forests to provide a source of seeds and protection from the effects of ungulates. Our results further suggest that aggressive control of patches of non-native plants within otherwise native-dominated forests may be an important and effective conservation strategy.  相似文献   

15.
Modeling seed dispersal distances: implications for transgenic Pinus taeda.   总被引:1,自引:0,他引:1  
Predicting forest-tree seed dispersal across a landscape is useful for estimating gene flow from genetically engineered (GE) or transgenic trees. The question of biocontainment has yet to be resolved, although field-trial permits for transgenic forest trees are on the rise. Most current field trials in the United States occur in the Southeast where Pinus taeda L., an indigenous species, is the major timber commodity. Seed dispersal distances were simulated using a model where the major determinants were: (1) forest canopy height at seed release, (2) terminal velocity of the seeds, (3) absolute seed release, and (4) turbulent-flow statistics, all of which were measured or determined within a P. taeda plantation established from seeds collected from wild forest-tree stands at the Duke Forest near Durham, North Carolina, USA. In plantations aged 16 and 25 years our model results showed that most of the seeds fell within local-neighborhood dispersal distances, with estimates ranging from 0.05 to 0.14 km from the source. A fraction of seeds was uplifted above the forest canopy and moved via the long-distance dispersal (LDD) process as far as 11.9-33.7 km. Out of 10(5) seeds produced per hectare per year, roughly 440 seeds were predicted to be uplifted by vertical eddies above the forest canopy and transported via LDD. Of these, 70 seeds/ha traveled distances in excess of 1 km from the source, a distance too great to serve as a biocontainment zone. The probability of LDD occurrence of transgenic conifer seeds at distances exceeding 1 km approached 100%.  相似文献   

16.
More complex models of forest ecosystems are required to understand how land-cover changes can impact vegetation dynamics and spatial pattern. In order to document spatio-temporal modelling abilities, the observations conducted in the declined climax mountain Norway spruce forest during the recovery period (1995-2006) are used for simulation and spatial analysis in the GIS environment. The developed spatio-temporal model is used for simulation of forest vegetation dynamics in a mountain spruce forest in the framework of regeneration processes after stress from air pollution. In order to explore the spatial and temporal phenomena of regeneration processes, the spatio-temporal model is based on a large set of ordinary differential equations that solve dynamic processes in sets of microsites arranged in grids for each ground vegetation species and each age group of Norway spruce seedlings. The spatial extent of the explored site is composed of a set of 50 × 50 microsites. Each microsite is represented by a square with dimensions of 1 m × 1 m. The presented simulation studies are mainly focused on seedlings from the seed year 1992, in order to explore the longest monitored time series of survival. It is based on exponential growth models that are related to the environmental conditions for each microsite. The canopy gaps based on estimates of the local crown projected area, the soil type layer, and the dominant grass density are used to provide case simulation studies. The first case study simulates the influence of microsite positions in relation to the local tree crown projections on the survival of spruce seedlings. It is assumed that the density of the trees is the main factor that determines the light and heat supply to the ground level of the Norway spruce seedlings. The second case study extends the previous study to include terms that determine the growth ratio in dependence on the crown projection area. The third case study provides further extensions in order to simulate growth ratio relations to the local soil type. The fourth case study demonstrates the local influence of the dominant grasses, such as Avenella flexuosa and Calamagrostis villosa, on the natural regeneration of Norway spruce. Starting from the conditions at the sites before the recovery period, the case simulation studies are able to project the short-term succession for a regeneration decade and the approximate long-term development. In addition to the standard simulation procedures based on solution of ordinary differential equations, spatio-temporal modelling in the GIS environment is able to provide spatial data management, analysis and visualization of the data.  相似文献   

17.
阐述了森林保持水土的条件 ,即良好的林分结构、必要的面积比例和一定的林龄 ,揭示了成林过程中水土保持功能的动态变化 ,为研究防护林体系水土保持功能持续提高技术提供了理论基础  相似文献   

18.
杉木林取代阔叶林后土壤生物学活性变化的研究   总被引:6,自引:2,他引:6  
通过对福建省南平市溪后安曹下取代阔叶林的70a生杉木车产林(山坡)、32a生杉木“青年林”(山坡)及前茬阔叶林(山脊)土壤生物学活性连续2a的比较研究结果表明,与山脊上前茬的阔叶林相比,70a生杉木丰产林土壤微生物总数、生理类群的数量减少、活性下降;土壤酶活性减弱;呼吸作用强度(内源)及添加基质的外源呼吸作用强度降低,土壤中有机质分解和腐殖质再合成程度降低.32a生杉木“青年林”土壤生物学活性下降则更为明显,说明从杉木取代阔叶林(头耕土)起,土壤生化活性及土壤肥力就存在明显下降现象,轮伐期缩短或林地连栽杉木代数增加,而不采取恢复地力措施,杉木林地地力衰退将更为明显.  相似文献   

19.
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of São Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands.  相似文献   

20.
Johnson DW 《Ecology》2006,87(1):64-75
Field studies have shown that elevated CO2 can cause increased forest growth over the short term (<6 years) even in the face of N limitation. This is facilitated to some degree by greater biomass production per unit N uptake (lower tissue N concentrations), but more often than not, N uptake is increased with elevated CO2 as well. Some studies also show that N sequestration in the forest floor is increased with elevated CO2. These findings raise the questions of where the "extra" N comes from and how long such growth increases can continue without being truncated by progressive N limitation (PNL). This paper reviews some of the early nutrient cycling literature that describes PNL during forest stand development and attempts to use this information, along with recent developments in soil N research, to put the issue of PNL with elevated CO2 into perspective. Some of the early studies indicated that trees can effectively "mine" N from soils over the long term, and more recent developments in soil N cycling research suggest mechanisms by which this might have occurred. However, both the early nutrient cycling literature and more recent simulation modeling suggest that PNL will at some point truncate the observed increases in growth and nutrient uptake with elevated CO2, unless external inputs of N are increased by either N fixation or atmospheric deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号